Solveeit Logo

Question

Question: \(\log_{27}32 \cdot \log_{49}625 \cdot \log_{0.5}7^{-1} \cdot \log_{125}81 = ?\)...

log2732log49625log0.571log12581=?\log_{27}32 \cdot \log_{49}625 \cdot \log_{0.5}7^{-1} \cdot \log_{125}81 = ?

Answer

409\displaystyle \frac{40}{9}

Explanation

Solution

We apply the change of base formula and simplify:

  1. log2732=ln32ln27=5ln23ln3\log_{27}32 = \frac{\ln 32}{\ln 27} = \frac{5\ln 2}{3\ln 3}

  2. log49625=ln625ln49=4ln52ln7=2ln5ln7\log_{49}625 = \frac{\ln 625}{\ln 49} = \frac{4\ln 5}{2\ln 7} = \frac{2\ln 5}{\ln 7}

  3. log0.571=ln(71)ln(0.5)=ln7ln2=ln7ln2\log_{0.5}7^{-1} = \frac{\ln(7^{-1})}{\ln(0.5)} = \frac{-\ln 7}{-\ln 2} = \frac{\ln 7}{\ln 2}

  4. log12581=ln81ln125=4ln33ln5\log_{125}81 = \frac{\ln 81}{\ln 125} = \frac{4\ln 3}{3\ln 5}

Multiplying all factors:

5ln23ln3    2ln5ln7    ln7ln2    4ln33ln5  =  5×2×43×3  ×  ln2ln2  ×  ln3ln3  ×  ln5ln5  ×  ln7ln7  =  409.\frac{5\ln 2}{3\ln 3} \;\cdot\; \frac{2\ln 5}{\ln 7} \;\cdot\; \frac{\ln 7}{\ln 2} \;\cdot\; \frac{4\ln 3}{3\ln 5} \;=\; \frac{5 \times 2 \times 4}{3 \times 3} \;\times\; \frac{\ln 2}{\ln 2} \;\times\; \frac{\ln 3}{\ln 3} \;\times\; \frac{\ln 5}{\ln 5} \;\times\; \frac{\ln 7}{\ln 7} \;=\; \frac{40}{9}.