Question
Question: \(\log_{27}32 \cdot \log_{49}625 \cdot \log_{0.5}7^{-1} \cdot \log_{125}81 = ?\)...
log2732⋅log49625⋅log0.57−1⋅log12581=?

Answer
940
Explanation
Solution
We apply the change of base formula and simplify:
-
log2732=ln27ln32=3ln35ln2
-
log49625=ln49ln625=2ln74ln5=ln72ln5
-
log0.57−1=ln(0.5)ln(7−1)=−ln2−ln7=ln2ln7
-
log12581=ln125ln81=3ln54ln3
Multiplying all factors:
3ln35ln2⋅ln72ln5⋅ln2ln7⋅3ln54ln3=3×35×2×4×ln2ln2×ln3ln3×ln5ln5×ln7ln7=940.