Solveeit Logo

Question

Question: Let A be a 2 x 2 matrix with real entries such that $A' = \alpha A + 1$, where $\alpha \in \mathbb{R...

Let A be a 2 x 2 matrix with real entries such that A=αA+1A' = \alpha A + 1, where αR{1,1}\alpha \in \mathbb{R} -\{-1, 1\}. If det (A2AA^2 - A) = 4, the sum of all possible values of α\alpha is equal to

A

0

B

\frac{3}{2}

C

2

D

\frac{5}{2}

Answer

\frac{5}{2}

Explanation

Solution

The relation AT=αA+IA^T = \alpha A + I for a 2x2 matrix AA with α±1\alpha \neq \pm 1 implies that AA must be a scalar matrix, A=kIA=kI, where k=11αk = \frac{1}{1-\alpha}. The condition det(A2AA^2 - A) = 4 then translates to (k2k)2=4(k^2-k)^2 = 4. This yields k2k=2k^2-k=2 or k2k=2k^2-k=-2. The equation k2k=2k^2-k=-2 has no real solutions for kk. The equation k2k=2k^2-k=2 yields k=2k=2 and k=1k=-1. Substituting k=11αk = \frac{1}{1-\alpha} back, we get α=1/2\alpha = 1/2 and α=2\alpha = 2. The sum of these possible values of α\alpha is 1/2+2=5/21/2 + 2 = 5/2.