Solveeit Logo

Question

Question: If $f(x) = \begin{cases} \frac{x\ln(\cos x)}{\ln(1+x^2)} \text{ for } x \neq 0 \\ 0 \text{ for } x=0...

If f(x)={xln(cosx)ln(1+x2) for x00 for x=0,f(x) = \begin{cases} \frac{x\ln(\cos x)}{\ln(1+x^2)} \text{ for } x \neq 0 \\ 0 \text{ for } x=0, \end{cases} then

A

f(x) is continuous at x=0

B

f(x) is differentiable at x=0

C

f'(0) = -1/2

D

f(x) is continuous but not differentiable at x=0

Answer

f(x) is continuous at x=0, f(x) is differentiable at x=0, and f'(0) = -1/2.

Explanation

Solution

To check for continuity at x=0x=0, we evaluate limx0f(x)\lim_{x \to 0} f(x). Using Taylor series: ln(cosx)x22\ln(\cos x) \approx -\frac{x^2}{2} and ln(1+x2)x2\ln(1+x^2) \approx x^2. So, limx0x(x22)x2=limx0x2=0\lim_{x \to 0} \frac{x(-\frac{x^2}{2})}{x^2} = \lim_{x \to 0} -\frac{x}{2} = 0. Since f(0)=0f(0)=0, f(x)f(x) is continuous at x=0x=0.

To check for differentiability at x=0x=0, we evaluate f(0)=limh0f(h)f(0)hf'(0) = \lim_{h \to 0} \frac{f(h)-f(0)}{h}. f(0)=limh01h(hln(cosh)ln(1+h2))=limh0ln(cosh)ln(1+h2)f'(0) = \lim_{h \to 0} \frac{1}{h} \left( \frac{h\ln(\cos h)}{\ln(1+h^2)} \right) = \lim_{h \to 0} \frac{\ln(\cos h)}{\ln(1+h^2)}. Using Taylor series again: limh0h22h2=12\lim_{h \to 0} \frac{-\frac{h^2}{2}}{h^2} = -\frac{1}{2}. Since the limit exists, f(x)f(x) is differentiable at x=0x=0 and f(0)=1/2f'(0) = -1/2.