Question
Question: If plane $P_1: x+y+z=k$ is one of the angle bisector plane of the planes $P_2: x+2y-6z=1$ and $P_3: ...
If plane P1:x+y+z=k is one of the angle bisector plane of the planes P2:x+2y−6z=1 and P3:3x+4y−4z=9, then k is equal to

4
-4
5
-5
4
Solution
The equations of the angle bisector planes of two planes A1x+B1y+C1z+D1=0 and A2x+B2y+C2z+D2=0 are given by: A12+B12+C12A1x+B1y+C1z+D1=±A22+B22+C22A2x+B2y+C2z+D2
The given planes are P2:x+2y−6z=1 and P3:3x+4y−4z=9. Rewrite them in the standard form Ax+By+Cz+D=0: P2:x+2y−6z−1=0 P3:3x+4y−4z−9=0
Calculate the magnitudes of the normal vectors: For P2, ∣N2∣=12+22+(−6)2=1+4+36=41. For P3, ∣N3∣=32+42+(−4)2=9+16+16=41.
Since ∣N2∣=∣N3∣, the equations for the angle bisector planes are: (x+2y−6z−1)=±(3x+4y−4z−9)
Case 1: Using the '+' sign x+2y−6z−1=3x+4y−4z−9 0=(3x−x)+(4y−2y)+(−4z−(−6z))+(−9−(−1)) 0=2x+2y+2z−8 Dividing by 2: x+y+z−4=0 x+y+z=4
This equation matches the form P1:x+y+z=k, so k=4.
Case 2: Using the '-' sign x+2y−6z−1=−(3x+4y−4z−9) x+2y−6z−1=−3x−4y+4z+9 (x+3x)+(2y+4y)+(−6z−4z)+(−1−9)=0 4x+6y−10z−10=0 Dividing by 2: 2x+3y−5z−5=0 2x+3y−5z=5
This equation does not match the form x+y+z=k.
Therefore, the plane P1:x+y+z=k is the angle bisector plane x+y+z=4. Thus, k=4.