Solveeit Logo

Question

Question: If plane $P_1: x+y+z=k$ is one of the angle bisector plane of the planes $P_2: x+2y-6z=1$ and $P_3: ...

If plane P1:x+y+z=kP_1: x+y+z=k is one of the angle bisector plane of the planes P2:x+2y6z=1P_2: x+2y-6z=1 and P3:3x+4y4z=9P_3: 3x+4y-4z=9, then k is equal to

A

4

B

-4

C

5

D

-5

Answer

4

Explanation

Solution

The equations of the angle bisector planes of two planes A1x+B1y+C1z+D1=0A_1x + B_1y + C_1z + D_1 = 0 and A2x+B2y+C2z+D2=0A_2x + B_2y + C_2z + D_2 = 0 are given by: A1x+B1y+C1z+D1A12+B12+C12=±A2x+B2y+C2z+D2A22+B22+C22\frac{A_1x + B_1y + C_1z + D_1}{\sqrt{A_1^2 + B_1^2 + C_1^2}} = \pm \frac{A_2x + B_2y + C_2z + D_2}{\sqrt{A_2^2 + B_2^2 + C_2^2}}

The given planes are P2:x+2y6z=1P_2: x+2y-6z=1 and P3:3x+4y4z=9P_3: 3x+4y-4z=9. Rewrite them in the standard form Ax+By+Cz+D=0Ax+By+Cz+D=0: P2:x+2y6z1=0P_2: x+2y-6z-1=0 P3:3x+4y4z9=0P_3: 3x+4y-4z-9=0

Calculate the magnitudes of the normal vectors: For P2P_2, N2=12+22+(6)2=1+4+36=41|N_2| = \sqrt{1^2 + 2^2 + (-6)^2} = \sqrt{1 + 4 + 36} = \sqrt{41}. For P3P_3, N3=32+42+(4)2=9+16+16=41|N_3| = \sqrt{3^2 + 4^2 + (-4)^2} = \sqrt{9 + 16 + 16} = \sqrt{41}.

Since N2=N3|N_2| = |N_3|, the equations for the angle bisector planes are: (x+2y6z1)=±(3x+4y4z9)(x+2y-6z-1) = \pm (3x+4y-4z-9)

Case 1: Using the '+' sign x+2y6z1=3x+4y4z9x+2y-6z-1 = 3x+4y-4z-9 0=(3xx)+(4y2y)+(4z(6z))+(9(1))0 = (3x-x) + (4y-2y) + (-4z - (-6z)) + (-9 - (-1)) 0=2x+2y+2z80 = 2x + 2y + 2z - 8 Dividing by 2: x+y+z4=0x+y+z-4 = 0 x+y+z=4x+y+z = 4

This equation matches the form P1:x+y+z=kP_1: x+y+z=k, so k=4k=4.

Case 2: Using the '-' sign x+2y6z1=(3x+4y4z9)x+2y-6z-1 = -(3x+4y-4z-9) x+2y6z1=3x4y+4z+9x+2y-6z-1 = -3x-4y+4z+9 (x+3x)+(2y+4y)+(6z4z)+(19)=0(x+3x) + (2y+4y) + (-6z-4z) + (-1-9) = 0 4x+6y10z10=04x+6y-10z-10 = 0 Dividing by 2: 2x+3y5z5=02x+3y-5z-5 = 0 2x+3y5z=52x+3y-5z = 5

This equation does not match the form x+y+z=kx+y+z=k.

Therefore, the plane P1:x+y+z=kP_1: x+y+z=k is the angle bisector plane x+y+z=4x+y+z=4. Thus, k=4k=4.