Solveeit Logo

Question

Question: If $f: R \rightarrow [-\frac{\pi}{4}, \frac{\pi}{2}], f(x) = \tan^{-1}(x^4 - x^2 -\frac{7}{4} + \tan...

If f:R[π4,π2],f(x)=tan1(x4x274+tan1α)f: R \rightarrow [-\frac{\pi}{4}, \frac{\pi}{2}], f(x) = \tan^{-1}(x^4 - x^2 -\frac{7}{4} + \tan^{-1}\alpha) is a surjective function then which of the following is/are CORRECT?

A

cos1(1α21+α2)=2\cos^{-1}(\frac{1-\alpha^2}{1+\alpha^2}) = 2

B

α+1α=2cosec2\alpha + \frac{1}{\alpha} = 2 \cos ec2

C

sin1(2α1+α2)=π2\sin^{-1}(\frac{2\alpha}{1+\alpha^2}) = \pi - 2

D

tan1(2αα21)=2π\tan^{-1}(\frac{2\alpha}{\alpha^2 - 1}) = 2 - \pi

Answer

A, B, C

Explanation

Solution

The problem requires us to find the value of α\alpha for which the given function f(x)f(x) is surjective, and then check which of the provided options are correct.

The function is f:R[π4,π2]f: R \rightarrow [-\frac{\pi}{4}, \frac{\pi}{2}], defined by f(x)=tan1(x4x274+tan1α)f(x) = \tan^{-1}(x^4 - x^2 -\frac{7}{4} + \tan^{-1}\alpha).

Step 1: Determine the range of the inner expression g(x)=x4x274g(x) = x^4 - x^2 -\frac{7}{4}. Let t=x2t = x^2. Since xRx \in R, t0t \ge 0. The expression becomes h(t)=t2t74h(t) = t^2 - t -\frac{7}{4}. This is a quadratic function in tt, representing a parabola opening upwards. Its vertex occurs at t=(1)2(1)=12t = -\frac{(-1)}{2(1)} = \frac{1}{2}. Since 120\frac{1}{2} \ge 0, the minimum value of h(t)h(t) occurs at t=12t = \frac{1}{2}. The minimum value is h(12)=(12)2(12)74=141274=1274=84=2h(\frac{1}{2}) = (\frac{1}{2})^2 - (\frac{1}{2}) -\frac{7}{4} = \frac{1}{4} - \frac{1}{2} -\frac{7}{4} = \frac{1-2-7}{4} = -\frac{8}{4} = -2. As tt \rightarrow \infty (which happens as xx \rightarrow \infty or xx \rightarrow -\infty), h(t)h(t) \rightarrow \infty. Therefore, the range of g(x)g(x) is [2,)[-2, \infty).

Step 2: Use the surjectivity condition to find tan1α\tan^{-1}\alpha. Let C=tan1αC = \tan^{-1}\alpha. The argument of the tan1\tan^{-1} function in f(x)f(x) is Y=g(x)+CY = g(x) + C. The range of YY is [2+C,)[-2+C, \infty). The function f(x)=tan1(Y)f(x) = \tan^{-1}(Y). The standard range of tan1(y)\tan^{-1}(y) is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}). For f(x)f(x) to be surjective onto the given codomain [π4,π2][-\frac{\pi}{4}, \frac{\pi}{2}]: The upper limit of the range of f(x)f(x) must be π2\frac{\pi}{2}. This is achieved as YY \rightarrow \infty, which is consistent with the range of YY being [2+C,)[-2+C, \infty). The lower limit of the range of f(x)f(x) must be π4-\frac{\pi}{4}. This occurs when YY takes its minimum value, Ymin=2+CY_{min} = -2+C. So, we must have tan1(Ymin)=π4\tan^{-1}(Y_{min}) = -\frac{\pi}{4}. tan1(2+C)=π4\tan^{-1}(-2+C) = -\frac{\pi}{4} 2+C=tan(π4)-2+C = \tan(-\frac{\pi}{4}) 2+C=1-2+C = -1 C=1C = 1. Since C=tan1αC = \tan^{-1}\alpha, we have tan1α=1\tan^{-1}\alpha = 1.

Step 3: Find the value of α\alpha. From tan1α=1\tan^{-1}\alpha = 1, we get α=tan(1)\alpha = \tan(1). (Note: 1 is in radians).

Step 4: Check each option using α=tan(1)\alpha = \tan(1). Let θ=1\theta = 1 radian. So α=tanθ\alpha = \tan\theta.

  • Option A: cos1(1α21+α2)\cos^{-1}(\frac{1-\alpha^2}{1+\alpha^2}) We know that 1tan2θ1+tan2θ=cos(2θ)\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos(2\theta). So, cos1(1tan2(1)1+tan2(1))=cos1(cos(2))\cos^{-1}(\frac{1-\tan^2(1)}{1+\tan^2(1)}) = \cos^{-1}(\cos(2)). Since 22 radians is approximately 2×57.3=114.62 \times 57.3^\circ = 114.6^\circ, which lies in the principal value range [0,π][0, \pi] for cos1x\cos^{-1}x. Therefore, cos1(cos(2))=2\cos^{-1}(\cos(2)) = 2. Option A is CORRECT.

  • Option B: α+1α\alpha + \frac{1}{\alpha} Substitute α=tan(1)\alpha = \tan(1): tan(1)+1tan(1)=tan(1)+cot(1)=sin(1)cos(1)+cos(1)sin(1)\tan(1) + \frac{1}{\tan(1)} = \tan(1) + \cot(1) = \frac{\sin(1)}{\cos(1)} + \frac{\cos(1)}{\sin(1)} =sin2(1)+cos2(1)sin(1)cos(1)=1sin(1)cos(1)= \frac{\sin^2(1) + \cos^2(1)}{\sin(1)\cos(1)} = \frac{1}{\sin(1)\cos(1)}. Multiply the numerator and denominator by 2: =22sin(1)cos(1)=2sin(2)= \frac{2}{2\sin(1)\cos(1)} = \frac{2}{\sin(2)}. We know that 1sin(2)=csc(2)\frac{1}{\sin(2)} = \csc(2) or cosec(2)\operatorname{cosec}(2). So, α+1α=2csc(2)\alpha + \frac{1}{\alpha} = 2\csc(2). Option B is CORRECT.

  • Option C: sin1(2α1+α2)\sin^{-1}(\frac{2\alpha}{1+\alpha^2}) We know that 2tanθ1+tan2θ=sin(2θ)\frac{2\tan\theta}{1+\tan^2\theta} = \sin(2\theta). So, sin1(2tan(1)1+tan2(1))=sin1(sin(2))\sin^{-1}(\frac{2\tan(1)}{1+\tan^2(1)}) = \sin^{-1}(\sin(2)). Since 22 radians is approximately 114.6114.6^\circ, it does not lie in the principal value range [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}] for sin1x\sin^{-1}x. We use the identity sinx=sin(πx)\sin x = \sin(\pi - x). So, sin1(sin(2))=sin1(sin(π2))\sin^{-1}(\sin(2)) = \sin^{-1}(\sin(\pi - 2)). Since π23.141592=1.14159\pi - 2 \approx 3.14159 - 2 = 1.14159 radians, which lies in [π2,π2][-\frac{\pi}{2}, \frac{\pi}{2}] (approximately [1.57,1.57][-1.57, 1.57]). Therefore, sin1(sin(2))=π2\sin^{-1}(\sin(2)) = \pi - 2. Option C is CORRECT.

  • Option D: tan1(2αα21)\tan^{-1}(\frac{2\alpha}{\alpha^2 - 1}) We know that 2tanθ1tan2θ=tan(2θ)\frac{2\tan\theta}{1-\tan^2\theta} = \tan(2\theta). So, 2tanθtan2θ1=2tanθ1tan2θ=tan(2θ)\frac{2\tan\theta}{\tan^2\theta - 1} = -\frac{2\tan\theta}{1-\tan^2\theta} = -\tan(2\theta). Substitute α=tan(1)\alpha = \tan(1): tan1(2tan(1)tan2(1)1)=tan1(tan(2))\tan^{-1}(\frac{2\tan(1)}{\tan^2(1) - 1}) = \tan^{-1}(-\tan(2)). Using the property tan1(y)=tan1(y)\tan^{-1}(-y) = -\tan^{-1}(y): =tan1(tan(2))= -\tan^{-1}(\tan(2)). Since 22 radians is approximately 114.6114.6^\circ, it does not lie in the principal value range (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}) for tan1x\tan^{-1}x. We use the identity tanx=tan(xπ)\tan x = \tan(x - \pi). So, tan1(tan(2))=tan1(tan(2π))\tan^{-1}(\tan(2)) = \tan^{-1}(\tan(2 - \pi)). Since 2π23.14159=1.141592 - \pi \approx 2 - 3.14159 = -1.14159 radians, which lies in (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}) (approximately (1.57,1.57)(-1.57, 1.57)). Therefore, tan1(tan(2))=2π\tan^{-1}(\tan(2)) = 2 - \pi. So, tan1(2αα21)=(2π)=π2\tan^{-1}(\frac{2\alpha}{\alpha^2 - 1}) = -(2 - \pi) = \pi - 2. Option D states 2π2 - \pi, which is incorrect.