Solveeit Logo

Question

Question: Let $f(x) = [\tan x [\cot x]], x \in [\frac{\pi}{12}, \frac{\pi}{4}]$ where $[x]$ denotes the greate...

Let f(x)=[tanx[cotx]],x[π12,π4]f(x) = [\tan x [\cot x]], x \in [\frac{\pi}{12}, \frac{\pi}{4}] where [x][x] denotes the greatest integer less than or equal to x. then which of the following is/are CORRECT?

A

f(x)=1f(x) = 1 has exactly 3 solutions

B

f(x)=0f(x) = 0 has more than 3 solutions

C

f(x)=2f(x) = 2 has exactly 2 solutions

D

f(x)=3f(x) = 3 has no solutions

Answer

A, B, D

Explanation

Solution

The function given is f(x)=[tanx[cotx]]f(x) = [\tan x [\cot x]] for x[π12,π4]x \in [\frac{\pi}{12}, \frac{\pi}{4}]. We need to analyze the values f(x)f(x) takes in this interval.

First, let's determine the range of tanx\tan x and cotx\cot x in the given interval: For x[π12,π4]x \in [\frac{\pi}{12}, \frac{\pi}{4}]: tanx\tan x is an increasing function. tan(π12)=tan(15)=2321.732=0.268\tan(\frac{\pi}{12}) = \tan(15^\circ) = 2 - \sqrt{3} \approx 2 - 1.732 = 0.268. tan(π4)=tan(45)=1\tan(\frac{\pi}{4}) = \tan(45^\circ) = 1. So, tanx[23,1]\tan x \in [2-\sqrt{3}, 1].

cotx\cot x is a decreasing function. cot(π12)=cot(15)=2+32+1.732=3.732\cot(\frac{\pi}{12}) = \cot(15^\circ) = 2 + \sqrt{3} \approx 2 + 1.732 = 3.732. cot(π4)=cot(45)=1\cot(\frac{\pi}{4}) = \cot(45^\circ) = 1. So, cotx[1,2+3]\cot x \in [1, 2+\sqrt{3}].

Now let's analyze the inner greatest integer function, [cotx][\cot x]: Since cotx[1,2+3]\cot x \in [1, 2+\sqrt{3}], [cotx][\cot x] can take integer values 1,2,31, 2, 3.

We divide the interval [π12,π4][\frac{\pi}{12}, \frac{\pi}{4}] into sub-intervals based on the value of [cotx][\cot x]. Let x1=cot1(3)x_1 = \cot^{-1}(3) and x2=cot1(2)x_2 = \cot^{-1}(2). Since cotx\cot x is decreasing, we have π12<x1<x2<π4\frac{\pi}{12} < x_1 < x_2 < \frac{\pi}{4}. (cot(π12)3.732\cot(\frac{\pi}{12}) \approx 3.732, cot(x1)=3\cot(x_1)=3, cot(x2)=2\cot(x_2)=2, cot(π4)=1\cot(\frac{\pi}{4})=1) This implies tan(x1)=1/3\tan(x_1) = 1/3 and tan(x2)=1/2\tan(x_2) = 1/2.

Case 1: [cotx]=3[\cot x] = 3 This occurs when 3cotx<43 \le \cot x < 4. Since cot(π12)=2+33.732\cot(\frac{\pi}{12}) = 2+\sqrt{3} \approx 3.732, this condition is satisfied for x[π12,cot1(3))x \in [\frac{\pi}{12}, \cot^{-1}(3)). So, for x[π12,x1)x \in [\frac{\pi}{12}, x_1), [cotx]=3[\cot x] = 3. In this interval, f(x)=[tanx3]f(x) = [\tan x \cdot 3]. As xx goes from π12\frac{\pi}{12} to x1x_1: tanx\tan x goes from 232-\sqrt{3} to 1/31/3. So, 3tanx3 \tan x goes from 3(23)3(0.268)=0.8043(2-\sqrt{3}) \approx 3(0.268) = 0.804 to 3(1/3)=13(1/3) = 1. Therefore, for x[π12,x1)x \in [\frac{\pi}{12}, x_1), 3tanx[0.804,1)3 \tan x \in [0.804, 1). Thus, f(x)=[3tanx]=0f(x) = [3 \tan x] = 0 for x[π12,x1)x \in [\frac{\pi}{12}, x_1). At x=x1=cot1(3)x = x_1 = \cot^{-1}(3), tanx1=1/3\tan x_1 = 1/3. So f(x1)=[313]=[1]=1f(x_1) = [3 \cdot \frac{1}{3}] = [1] = 1.

Case 2: [cotx]=2[\cot x] = 2 This occurs when 2cotx<32 \le \cot x < 3. This means x(cot1(3),cot1(2))x \in (\cot^{-1}(3), \cot^{-1}(2)). So, for x(x1,x2)x \in (x_1, x_2), [cotx]=2[\cot x] = 2. In this interval, f(x)=[tanx2]f(x) = [\tan x \cdot 2]. As xx goes from x1x_1 to x2x_2: tanx\tan x goes from 1/31/3 to 1/21/2. So, 2tanx2 \tan x goes from 2(1/3)=2/30.6672(1/3) = 2/3 \approx 0.667 to 2(1/2)=12(1/2) = 1. Therefore, for x(x1,x2)x \in (x_1, x_2), 2tanx(2/3,1)2 \tan x \in (2/3, 1). Thus, f(x)=[2tanx]=0f(x) = [2 \tan x] = 0 for x(x1,x2)x \in (x_1, x_2). At x=x2=cot1(2)x = x_2 = \cot^{-1}(2), tanx2=1/2\tan x_2 = 1/2. So f(x2)=[212]=[1]=1f(x_2) = [2 \cdot \frac{1}{2}] = [1] = 1.

Case 3: [cotx]=1[\cot x] = 1 This occurs when 1cotx<21 \le \cot x < 2. This means x(cot1(2),cot1(1))x \in (\cot^{-1}(2), \cot^{-1}(1)). We know cot1(1)=π4\cot^{-1}(1) = \frac{\pi}{4}. So, for x(x2,π4)x \in (x_2, \frac{\pi}{4}), [cotx]=1[\cot x] = 1. In this interval, f(x)=[tanx1]=[tanx]f(x) = [\tan x \cdot 1] = [\tan x]. As xx goes from x2x_2 to π4\frac{\pi}{4}: tanx\tan x goes from 1/21/2 to 11. Therefore, for x(x2,π4)x \in (x_2, \frac{\pi}{4}), tanx(1/2,1)\tan x \in (1/2, 1). Thus, f(x)=[tanx]=0f(x) = [\tan x] = 0 for x(x2,π4)x \in (x_2, \frac{\pi}{4}). At x=π4x = \frac{\pi}{4}, tan(π4)=1\tan(\frac{\pi}{4}) = 1. So f(π4)=[1]=1f(\frac{\pi}{4}) = [1] = 1.

Summary of f(x)f(x) values: f(x)=0f(x) = 0 for x[π12,x1)(x1,x2)(x2,π4)x \in [\frac{\pi}{12}, x_1) \cup (x_1, x_2) \cup (x_2, \frac{\pi}{4}). f(x)=1f(x) = 1 for x{x1,x2,π4}x \in \{x_1, x_2, \frac{\pi}{4}\}.

Now let's evaluate the given options:

A. f(x)=1f(x) = 1 has exactly 3 solutions. From our analysis, f(x)=1f(x) = 1 at x=cot1(3)x = \cot^{-1}(3), x=cot1(2)x = \cot^{-1}(2), and x=π4x = \frac{\pi}{4}. These are three distinct solutions. Thus, option A is CORRECT.

B. f(x)=0f(x) = 0 has more than 3 solutions. f(x)=0f(x) = 0 for x[π12,x1)(x1,x2)(x2,π4)x \in [\frac{\pi}{12}, x_1) \cup (x_1, x_2) \cup (x_2, \frac{\pi}{4}). These are intervals, which contain infinitely many solutions. Thus, option B is CORRECT.

C. f(x)=2f(x) = 2 has exactly 2 solutions. Based on our analysis, f(x)f(x) only takes values 0 and 1 in the given domain. It never takes the value 2. Thus, option C is INCORRECT.

D. f(x)=3f(x) = 3 has no solutions. Based on our analysis, f(x)f(x) only takes values 0 and 1 in the given domain. It never takes the value 3. Thus, option D is CORRECT.

The correct options are A, B, and D.

Explanation of the solution: The function f(x)=[tanx[cotx]]f(x) = [\tan x [\cot x]] is analyzed over x[π12,π4]x \in [\frac{\pi}{12}, \frac{\pi}{4}].

  1. Determine the range of cotx\cot x and [cotx][\cot x]. cotx[1,2+3]\cot x \in [1, 2+\sqrt{3}], so [cotx][\cot x] can be 1,2,31, 2, 3.
  2. Divide the domain into sub-intervals based on the value of [cotx][\cot x]. Let x1=cot1(3)x_1 = \cot^{-1}(3) and x2=cot1(2)x_2 = \cot^{-1}(2).
    • For x[π12,x1)x \in [\frac{\pi}{12}, x_1), [cotx]=3[\cot x] = 3. f(x)=[3tanx]f(x) = [3 \tan x]. Since 3tanx[3(23),1)3 \tan x \in [3(2-\sqrt{3}), 1), f(x)=0f(x)=0.
    • At x=x1x=x_1, f(x1)=[3(1/3)]=1f(x_1) = [3(1/3)] = 1.
    • For x(x1,x2)x \in (x_1, x_2), [cotx]=2[\cot x] = 2. f(x)=[2tanx]f(x) = [2 \tan x]. Since 2tanx(2/3,1)2 \tan x \in (2/3, 1), f(x)=0f(x)=0.
    • At x=x2x=x_2, f(x2)=[2(1/2)]=1f(x_2) = [2(1/2)] = 1.
    • For x(x2,π4)x \in (x_2, \frac{\pi}{4}), [cotx]=1[\cot x] = 1. f(x)=[tanx]f(x) = [\tan x]. Since tanx(1/2,1)\tan x \in (1/2, 1), f(x)=0f(x)=0.
    • At x=π4x=\frac{\pi}{4}, f(π4)=[1]=1f(\frac{\pi}{4}) = [1] = 1.
  3. Summarize f(x)f(x): f(x)=1f(x)=1 at x1,x2,π4x_1, x_2, \frac{\pi}{4} (3 solutions). f(x)=0f(x)=0 over the intervals [π12,x1)[\frac{\pi}{12}, x_1), (x1,x2)(x_1, x_2), (x2,π4)(x_2, \frac{\pi}{4}) (infinitely many solutions). f(x)f(x) never takes values 2 or 3.
  4. Evaluate options: A is correct, B is correct, C is incorrect, D is correct.