Solveeit Logo

Question

Question: If $y = Tan^{-1}(\frac{3+2\log_e x}{1-6\log_e x})+Tan^{-1}(\frac{\log_e(\frac{e}{x^2})}{\log_e(ex^2)...

If y=Tan1(3+2logex16logex)+Tan1(loge(ex2)loge(ex2))y = Tan^{-1}(\frac{3+2\log_e x}{1-6\log_e x})+Tan^{-1}(\frac{\log_e(\frac{e}{x^2})}{\log_e(ex^2)}), then d2ydx2\frac{d^2y}{dx^2} is

Answer

0

Explanation

Solution

Let u=logexu = \log_e x. The function yy can be expressed as y=Tan1(3+2u16u)+Tan1(12u1+2u)y = Tan^{-1}\left(\frac{3+2u}{1-6u}\right)+Tan^{-1}\left(\frac{1-2u}{1+2u}\right). Differentiating yy with respect to uu yields dydu=21+4u221+4u2=0\frac{dy}{du} = \frac{2}{1+4u^2} - \frac{2}{1+4u^2} = 0. Since dydu=0\frac{dy}{du}=0, yy is a constant with respect to uu, and thus a constant with respect to xx. The first and second derivatives of a constant are zero.