Question
Question: Absolute value of $\begin{vmatrix} 2a & 2b & b-c \\ 2b & 2a & a+c \\ a+b & a+b & b \end{vmatrix}$ is...
Absolute value of 2a2ba+b2b2aa+bb−ca+cb is divisible by (where a,b,c∈N)

The absolute value of the determinant is 2(a+b)(a−b)2. This expression is divisible by 2, (a+b), (a−b), and (a−b)2.
Solution
The determinant D is given by: D=2a2ba+b2b2aa+bb−ca+cb
Apply C1→C1+C2: D=2a+2b2b+2aa+b+a+b2b2aa+bb−ca+cb=2(a+b)2(a+b)2(a+b)2b2aa+bb−ca+cb
Take 2(a+b) common from C1: D=2(a+b)1112b2aa+bb−ca+cb
Apply R2→R2−R1 and R3→R3−R1: D=2(a+b)1002b2a−2ba+b−2bb−ca+c−(b−c)b−(b−c) D=2(a+b)1002b2(a−b)a−bb−ca−b+2cc
Expand along C1: D=2(a+b)[1⋅(2(a−b)c−(a−b+2c)(a−b))] D=2(a+b)[2c(a−b)−(a−b)2−2c(a−b)] D=2(a+b)[−(a−b)2] D=−2(a+b)(a−b)2
The absolute value is ∣D∣=∣−2(a+b)(a−b)2∣=2(a+b)(a−b)2 (since a,b∈N, a+b>0 and (a−b)2≥0). The expression 2(a+b)(a−b)2 is divisible by 2, (a+b), (a−b), and (a−b)2.
