Solveeit Logo

Question

Question: Absolute value of $\begin{vmatrix} 2a & 2b & b-c \\ 2b & 2a & a+c \\ a+b & a+b & b \end{vmatrix}$ is...

Absolute value of 2a2bbc2b2aa+ca+ba+bb\begin{vmatrix} 2a & 2b & b-c \\ 2b & 2a & a+c \\ a+b & a+b & b \end{vmatrix} is divisible by (where a,b,cNa,b,c \in N)

Answer

The absolute value of the determinant is 2(a+b)(ab)22(a+b)(a-b)^2. This expression is divisible by 22, (a+b)(a+b), (ab)(a-b), and (ab)2(a-b)^2.

Explanation

Solution

The determinant DD is given by: D=2a2bbc2b2aa+ca+ba+bbD = \begin{vmatrix} 2a & 2b & b-c \\ 2b & 2a & a+c \\ a+b & a+b & b \end{vmatrix}

Apply C1C1+C2C_1 \to C_1 + C_2: D=2a+2b2bbc2b+2a2aa+ca+b+a+ba+bb=2(a+b)2bbc2(a+b)2aa+c2(a+b)a+bbD = \begin{vmatrix} 2a+2b & 2b & b-c \\ 2b+2a & 2a & a+c \\ a+b+a+b & a+b & b \end{vmatrix} = \begin{vmatrix} 2(a+b) & 2b & b-c \\ 2(a+b) & 2a & a+c \\ 2(a+b) & a+b & b \end{vmatrix}

Take 2(a+b)2(a+b) common from C1C_1: D=2(a+b)12bbc12aa+c1a+bbD = 2(a+b) \begin{vmatrix} 1 & 2b & b-c \\ 1 & 2a & a+c \\ 1 & a+b & b \end{vmatrix}

Apply R2R2R1R_2 \to R_2 - R_1 and R3R3R1R_3 \to R_3 - R_1: D=2(a+b)12bbc02a2ba+c(bc)0a+b2bb(bc)D = 2(a+b) \begin{vmatrix} 1 & 2b & b-c \\ 0 & 2a-2b & a+c-(b-c) \\ 0 & a+b-2b & b-(b-c) \end{vmatrix} D=2(a+b)12bbc02(ab)ab+2c0abcD = 2(a+b) \begin{vmatrix} 1 & 2b & b-c \\ 0 & 2(a-b) & a-b+2c \\ 0 & a-b & c \end{vmatrix}

Expand along C1C_1: D=2(a+b)[1(2(ab)c(ab+2c)(ab))]D = 2(a+b) [1 \cdot (2(a-b)c - (a-b+2c)(a-b))] D=2(a+b)[2c(ab)(ab)22c(ab)]D = 2(a+b) [2c(a-b) - (a-b)^2 - 2c(a-b)] D=2(a+b)[(ab)2]D = 2(a+b) [-(a-b)^2] D=2(a+b)(ab)2D = -2(a+b)(a-b)^2

The absolute value is D=2(a+b)(ab)2=2(a+b)(ab)2|D| = |-2(a+b)(a-b)^2| = 2(a+b)(a-b)^2 (since a,bNa, b \in \mathbb{N}, a+b>0a+b > 0 and (ab)20(a-b)^2 \ge 0). The expression 2(a+b)(ab)22(a+b)(a-b)^2 is divisible by 22, (a+b)(a+b), (ab)(a-b), and (ab)2(a-b)^2.