Solveeit Logo

Question

Question: The volume of a right triangular prism $ABCA_1B_1C_1$ is equal to 3 cubic units. Then the co-ordinat...

The volume of a right triangular prism ABCA1B1C1ABCA_1B_1C_1 is equal to 3 cubic units. Then the co-ordinates of the vertex A1A_1, if the co-ordinates of the base vertices of the prism are A (1,0,1), B (2,0,0) and C (0,1,0) be (a,b,c) then a+b+c can be equal to (A1A_1 is vertically above A)

A

6

B

-2

C

0

D

3

Answer

6 and -2

Explanation

Solution

  1. Represent the base vertices A, B, C as position vectors: A=i^+k^\vec{A} = \hat{i} + \hat{k}, B=2i^\vec{B} = 2\hat{i}, C=j^\vec{C} = \hat{j}.
  2. Calculate vectors representing two sides of the base triangle: AB=BA=i^k^\overrightarrow{AB} = \vec{B} - \vec{A} = \hat{i} - \hat{k} and AC=CA=i^+j^k^\overrightarrow{AC} = \vec{C} - \vec{A} = -\hat{i} + \hat{j} - \hat{k}.
  3. Find the normal vector to the base plane by computing the cross product: n=AB×AC=i^+2j^+k^\vec{n} = \overrightarrow{AB} \times \overrightarrow{AC} = \hat{i} + 2\hat{j} + \hat{k}.
  4. Calculate the magnitude of the normal vector: n=12+22+12=6|\vec{n}| = \sqrt{1^2 + 2^2 + 1^2} = \sqrt{6}.
  5. The area of the base triangle is half the magnitude of the cross product: Area =12n=62= \frac{1}{2}|\vec{n}| = \frac{\sqrt{6}}{2}.
  6. Use the volume formula for a prism (Volume = Base Area × Height) to find the height hh: 3=62×h    h=66=63 = \frac{\sqrt{6}}{2} \times h \implies h = \frac{6}{\sqrt{6}} = \sqrt{6}.
  7. The height vector AA1\overrightarrow{AA_1} is parallel to n\vec{n} and has magnitude hh. So, AA1=kn\overrightarrow{AA_1} = k\vec{n}, where kn=h|k||\vec{n}| = h. This gives k6=6|k|\sqrt{6} = \sqrt{6}, so k=1|k|=1. Thus, k=1k=1 or k=1k=-1.
  8. Determine the position vector of A1A_1: A1=A+AA1=A+kn\vec{A_1} = \vec{A} + \overrightarrow{AA_1} = \vec{A} + k\vec{n}.
    • Case 1 (k=1k=1): A1=(i^+k^)+1(i^+2j^+k^)=2i^+2j^+2k^\vec{A_1} = (\hat{i} + \hat{k}) + 1(\hat{i} + 2\hat{j} + \hat{k}) = 2\hat{i} + 2\hat{j} + 2\hat{k}. So, A1=(2,2,2)A_1 = (2,2,2). The sum of coordinates is a+b+c=2+2+2=6a+b+c = 2+2+2 = 6.
    • Case 2 (k=1k=-1): A1=(i^+k^)1(i^+2j^+k^)=2j^\vec{A_1} = (\hat{i} + \hat{k}) - 1(\hat{i} + 2\hat{j} + \hat{k}) = -2\hat{j}. So, A1=(0,2,0)A_1 = (0,-2,0). The sum of coordinates is a+b+c=0+(2)+0=2a+b+c = 0+(-2)+0 = -2.
  9. The possible values for a+b+ca+b+c are 6 and -2.