Solveeit Logo

Question

Question: Q 37 | | No. of 3c-2e bonds | No. of 2c-2e bonds | | -------------------- | --...

Q 37

No. of 3c-2e bondsNo. of 2c-2e bonds
Be(BH4)2Be(BH_4)_2xp
Al(BH4)3Al(BH_4)_3yq

Then [(y+q)(x+p)][(y + q) – (x + p)] is ______.

A

4

B

8

C

12

D

2

Answer

4

Explanation

Solution

In metal borohydrides, the borohydride ion (BH4BH_4^-) typically coordinates to the metal center through bridging hydrogen atoms. The most common coordination mode for BH4BH_4^- ligands in compounds like Be(BH4)2Be(BH_4)_2 and Al(BH4)3Al(BH_4)_3 is bidentate bridging, where two hydrogen atoms from each BH4BH_4 group bridge to the metal center.

  1. For Be(BH4)2Be(BH_4)_2:

    • There are two BH4BH_4 ligands.
    • Each BH4BH_4 ligand acts as a bidentate bridging ligand, meaning it forms two B-H-Be bridges.
    • Each B-H-Be bridge is a 3c-2e bond. Thus, each BH4BH_4 unit contributes 2 such bonds.
    • Total number of 3c-2e bonds in Be(BH4)2Be(BH_4)_2 is x=2 ligands×2 bonds/ligand=4x = 2 \text{ ligands} \times 2 \text{ bonds/ligand} = 4.
    • In each BH4BH_4 unit, there are a total of 4 B-H bonds. If 2 are bridging (3c-2e), the remaining 42=24 - 2 = 2 are terminal B-H bonds.
    • Each terminal B-H bond is a 2c-2e bond.
    • Total number of 2c-2e bonds in Be(BH4)2Be(BH_4)_2 is p=2 ligands×2 bonds/ligand=4p = 2 \text{ ligands} \times 2 \text{ bonds/ligand} = 4.
  2. For Al(BH4)3Al(BH_4)_3:

    • There are three BH4BH_4 ligands.
    • Each BH4BH_4 ligand acts as a bidentate bridging ligand, forming two B-H-Al bridges.
    • Each B-H-Al bridge is a 3c-2e bond. Thus, each BH4BH_4 unit contributes 2 such bonds.
    • Total number of 3c-2e bonds in Al(BH4)3Al(BH_4)_3 is y=3 ligands×2 bonds/ligand=6y = 3 \text{ ligands} \times 2 \text{ bonds/ligand} = 6.
    • The remaining 42=24 - 2 = 2 B-H bonds in each BH4BH_4 unit are terminal 2c-2e bonds.
    • Total number of 2c-2e bonds in Al(BH4)3Al(BH_4)_3 is q=3 ligands×2 bonds/ligand=6q = 3 \text{ ligands} \times 2 \text{ bonds/ligand} = 6.

Now, we need to calculate [(y+q)(x+p)][(y + q) – (x + p)]:

  • y+q=6+6=12y + q = 6 + 6 = 12 (Total number of B-H bonds in Al(BH4)3Al(BH_4)_3)
  • x+p=4+4=8x + p = 4 + 4 = 8 (Total number of B-H bonds in Be(BH4)2Be(BH_4)_2)

Therefore, [(y+q)(x+p)]=128=4[(y + q) – (x + p)] = 12 - 8 = 4.

Alternatively, we can note that x+px+p is the total number of B-H bonds in Be(BH4)2Be(BH_4)_2 (2×4=82 \times 4 = 8) and y+qy+q is the total number of B-H bonds in Al(BH4)3Al(BH_4)_3 (3×4=123 \times 4 = 12). The difference is 128=412 - 8 = 4.