Solveeit Logo

Question

Question: Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined as $f(x)=\begin{cases} x+a, & x<0 \\ |x...

Let f:RRf: R \rightarrow R and g:RRg: R \rightarrow R be defined as f(x)={x+a,x<0x1,x0f(x)=\begin{cases} x+a, & x<0 \\ |x-1|, & x \ge 0 \end{cases} and g(x)={x+1,x<0(x1)2+b,x0g(x)=\begin{cases} x+1, & x<0 \\ (x-1)^2+b, & x \ge 0 \end{cases}, where a,ba, b are non-negative real numbers. If gof(x)gof(x) is continuous for all xRx \in R, then a+ba+b is equal to ____.

A

1

B

2

C

3

D

4

Answer

1

Explanation

Solution

The functions are defined as: f(x)={x+a,x<0x1,x0f(x)=\begin{cases} x+a, & x<0 \\ |x-1|, & x \ge 0 \end{cases} g(x)={x+1,x<0(x1)2+b,x0g(x)=\begin{cases} x+1, & x<0 \\ (x-1)^2+b, & x \ge 0 \end{cases} where a,b0a, b \ge 0.

First, let's analyze f(x)f(x) for x0x \ge 0: f(x)=x1={1x,0x<1x1,x1f(x) = |x-1| = \begin{cases} 1-x, & 0 \le x < 1 \\ x-1, & x \ge 1 \end{cases} So, f(x)f(x) can be written as: f(x)={x+a,x<01x,0x<1x1,x1f(x)=\begin{cases} x+a, & x<0 \\ 1-x, & 0 \le x < 1 \\ x-1, & x \ge 1 \end{cases}

The composite function is gof(x)=g(f(x))gof(x) = g(f(x)). For gof(x)gof(x) to be continuous, we need to check the continuity at points where f(x)f(x) might be discontinuous (x=0,x=1x=0, x=1) and at points where f(x)f(x) makes the argument of gg equal to the point of discontinuity of gg (f(x)=0f(x)=0).

Let's find xx such that f(x)=0f(x)=0:

  1. If x<0x<0: x+a=0    x=ax+a=0 \implies x=-a. This is valid if a<0-a<0, i.e., a>0a>0.
  2. If 0x<10 \le x < 1: 1x=0    x=11-x=0 \implies x=1. This is not in the interval [0,1)[0, 1).
  3. If x1x \ge 1: x1=0    x=1x-1=0 \implies x=1. This is valid.

So, f(x)=0f(x)=0 at x=1x=1 and possibly at x=ax=-a (if a>0a>0). The critical points for continuity of gof(x)gof(x) are x=0,x=1x=0, x=1, and x=ax=-a (if a>0a>0).

Case 1: a>0a > 0 The critical points are x=0,x=1,x=ax=0, x=1, x=-a.

  • Continuity at x=0x=0:
    • Left-hand limit: limx0gof(x)\lim_{x \to 0^-} gof(x). For x<0x<0, f(x)=x+af(x)=x+a. As x0x \to 0^-, f(x)af(x) \to a. Since a>0a>0, f(x)>0f(x)>0. gof(x)=g(f(x))=g(x+a)=((x+a)1)2+bgof(x) = g(f(x)) = g(x+a) = ((x+a)-1)^2+b. limx0gof(x)=(a1)2+b\lim_{x \to 0^-} gof(x) = (a-1)^2+b.
    • Right-hand limit: limx0+gof(x)\lim_{x \to 0^+} gof(x). For x0+x \to 0^+, f(x)=x1=1xf(x) = |x-1| = 1-x. As x0+x \to 0^+, f(x)1f(x) \to 1. Since f(x)>0f(x)>0, gof(x)=g(f(x))=g(1x)=((1x)1)2+b=(x)2+b=x2+bgof(x) = g(f(x)) = g(1-x) = ((1-x)-1)^2+b = (-x)^2+b = x^2+b. limx0+gof(x)=02+b=b\lim_{x \to 0^+} gof(x) = 0^2+b = b.
    • Function value: f(0)=01=1f(0)=|0-1|=1. gof(0)=g(f(0))=g(1)=(11)2+b=bgof(0)=g(f(0))=g(1)=(1-1)^2+b=b. For continuity at x=0x=0: (a1)2+b=b    (a1)2=0    a=1(a-1)^2+b = b \implies (a-1)^2 = 0 \implies a=1. This is consistent with a>0a>0. So, a=1a=1.

Now a=1a=1. The critical points are x=0,x=1,x=1x=0, x=1, x=-1. f(x)={x+1,x<01x,0x<1x1,x1f(x)=\begin{cases} x+1, & x<0 \\ 1-x, & 0 \le x < 1 \\ x-1, & x \ge 1 \end{cases}

  • Continuity at x=1x=-1:
    • Left-hand limit: limx1gof(x)\lim_{x \to -1^-} gof(x). For x<1x<-1, f(x)=x+1f(x)=x+1. So f(x)<0f(x)<0. gof(x)=g(f(x))=g(x+1)=(x+1)+1=x+2gof(x) = g(f(x)) = g(x+1) = (x+1)+1 = x+2. limx1gof(x)=1+2=1\lim_{x \to -1^-} gof(x) = -1+2 = 1.
    • Right-hand limit: limx1+gof(x)\lim_{x \to -1^+} gof(x). For 1x<0-1 \le x < 0, f(x)=x+1f(x)=x+1. So 0f(x)<10 \le f(x) < 1, which means f(x)0f(x) \ge 0. gof(x)=g(f(x))=g(x+1)=((x+1)1)2+b=x2+bgof(x) = g(f(x)) = g(x+1) = ((x+1)-1)^2+b = x^2+b. limx1+gof(x)=(1)2+b=1+b\lim_{x \to -1^+} gof(x) = (-1)^2+b = 1+b.
    • Function value: f(1)=1+1=0f(-1)=-1+1=0. gof(1)=g(f(1))=g(0)=0+1=1gof(-1)=g(f(-1))=g(0)=0+1=1. For continuity at x=1x=-1: 1=1+b    b=01 = 1+b \implies b=0. This is consistent with b0b \ge 0. So, b=0b=0.

With a=1a=1 and b=0b=0, we have a+b=1a+b=1. Let's verify continuity at x=1x=1. f(x)={x+1,x<01x,0x<1x1,x1f(x)=\begin{cases} x+1, & x<0 \\ 1-x, & 0 \le x < 1 \\ x-1, & x \ge 1 \end{cases}, g(x)={x+1,x<0(x1)2,x0g(x)=\begin{cases} x+1, & x<0 \\ (x-1)^2, & x \ge 0 \end{cases}

  • Left-hand limit at x=1x=1: limx1gof(x)\lim_{x \to 1^-} gof(x). For 0x<10 \le x < 1, f(x)=1xf(x)=1-x. As x1x \to 1^-, f(x)0+f(x) \to 0^+, so f(x)0f(x) \ge 0. gof(x)=g(f(x))=g(1x)=((1x)1)2=(x)2=x2gof(x) = g(f(x)) = g(1-x) = ((1-x)-1)^2 = (-x)^2 = x^2. limx1gof(x)=12=1\lim_{x \to 1^-} gof(x) = 1^2 = 1.
  • Right-hand limit at x=1x=1: limx1+gof(x)\lim_{x \to 1^+} gof(x). For x1x \ge 1, f(x)=x1f(x)=x-1. As x1+x \to 1^+, f(x)0+f(x) \to 0^+, so f(x)0f(x) \ge 0. gof(x)=g(f(x))=g(x1)=((x1)1)2=(x2)2gof(x) = g(f(x)) = g(x-1) = ((x-1)-1)^2 = (x-2)^2. limx1+gof(x)=(12)2=1\lim_{x \to 1^+} gof(x) = (1-2)^2 = 1.
  • Function value: f(1)=11=0f(1)=1-1=0. gof(1)=g(f(1))=g(0)=0+1=1gof(1)=g(f(1))=g(0)=0+1=1. Continuity at x=1x=1 is satisfied. Thus, a=1,b=0a=1, b=0 is a valid solution, giving a+b=1a+b=1.

Case 2: a=0a = 0 The critical points are x=0,x=1x=0, x=1. f(x)={x,x<01x,0x<1x1,x1f(x)=\begin{cases} x, & x<0 \\ 1-x, & 0 \le x < 1 \\ x-1, & x \ge 1 \end{cases}

  • Continuity at x=0x=0:
    • Left-hand limit: limx0gof(x)\lim_{x \to 0^-} gof(x). For x<0x<0, f(x)=xf(x)=x. So f(x)<0f(x)<0. gof(x)=g(f(x))=g(x)=x+1gof(x) = g(f(x)) = g(x) = x+1. limx0gof(x)=0+1=1\lim_{x \to 0^-} gof(x) = 0+1 = 1.
    • Right-hand limit: limx0+gof(x)\lim_{x \to 0^+} gof(x). For x0+x \to 0^+, f(x)=1x1f(x)=1-x \to 1. So f(x)>0f(x)>0. gof(x)=g(f(x))=g(1x)=((1x)1)2+b=x2+bgof(x) = g(f(x)) = g(1-x) = ((1-x)-1)^2+b = x^2+b. limx0+gof(x)=02+b=b\lim_{x \to 0^+} gof(x) = 0^2+b = b.
    • Function value: f(0)=01=1f(0)=|0-1|=1. gof(0)=g(f(0))=g(1)=(11)2+b=bgof(0)=g(f(0))=g(1)=(1-1)^2+b=b. For continuity at x=0x=0: 1=b1=b. So, a=0,b=1a=0, b=1.

Now let's check continuity at x=1x=1 with a=0,b=1a=0, b=1. f(x)={x,x<01x,0x<1x1,x1f(x)=\begin{cases} x, & x<0 \\ 1-x, & 0 \le x < 1 \\ x-1, & x \ge 1 \end{cases}, g(x)={x+1,x<0(x1)2+1,x0g(x)=\begin{cases} x+1, & x<0 \\ (x-1)^2+1, & x \ge 0 \end{cases}

  • Left-hand limit at x=1x=1: limx1gof(x)\lim_{x \to 1^-} gof(x). For 0x<10 \le x < 1, f(x)=1xf(x)=1-x. As x1x \to 1^-, f(x)0+f(x) \to 0^+, so f(x)0f(x) \ge 0. gof(x)=g(f(x))=g(1x)=((1x)1)2+1=(x)2+1=x2+1gof(x) = g(f(x)) = g(1-x) = ((1-x)-1)^2+1 = (-x)^2+1 = x^2+1. limx1gof(x)=12+1=2\lim_{x \to 1^-} gof(x) = 1^2+1 = 2.
  • Right-hand limit at x=1x=1: limx1+gof(x)\lim_{x \to 1^+} gof(x). For x1x \ge 1, f(x)=x1f(x)=x-1. As x1+x \to 1^+, f(x)0+f(x) \to 0^+, so f(x)0f(x) \ge 0. gof(x)=g(f(x))=g(x1)=((x1)1)2+1=(x2)2+1gof(x) = g(f(x)) = g(x-1) = ((x-1)-1)^2+1 = (x-2)^2+1. limx1+gof(x)=(12)2+1=1+1=2\lim_{x \to 1^+} gof(x) = (1-2)^2+1 = 1+1 = 2.
  • Function value: f(1)=11=0f(1)=1-1=0. gof(1)=g(f(1))=g(0)=0+1=1gof(1)=g(f(1))=g(0)=0+1=1. For continuity at x=1x=1, we need 2=2=12=2=1, which is false. So, the case a=0a=0 does not yield a continuous function gof(x)gof(x).

The only valid solution is a=1,b=0a=1, b=0. Therefore, a+b=1+0=1a+b = 1+0 = 1.