Solveeit Logo

Question

Question: Vessel A contains an ideal gas at a pressure $5 \times 10^5$ Pa and is connected with a heat source ...

Vessel A contains an ideal gas at a pressure 5×1055 \times 10^5 Pa and is connected with a heat source which maintains its temperature at 300K. Another vessel B which has four times greater inner volume contains the same gas at a pressure 10510^5 Pa and is connected to a heat source which maintains its temperature at 400K. What will be the pressure of entire system if two vessels are now connected by a narrow tube tap:-

A

1.8 x 10^5 Pa

B

1.5 x 10^5 Pa

C

2.0 x 10^5 Pa

D

2.5 x 10^5 Pa

Answer

1.8 x 10^5 Pa

Explanation

Solution

  1. Calculate initial moles using PV=nRTPV=nRT: nA=PAVARTA=(5×105)VAR×300n_A = \frac{P_A V_A}{R T_A} = \frac{(5 \times 10^5) V_A}{R \times 300} nB=PBVBRTB=(105)(4VA)R×400=(4×105)VAR×400n_B = \frac{P_B V_B}{R T_B} = \frac{(10^5) (4V_A)}{R \times 400} = \frac{(4 \times 10^5) V_A}{R \times 400}
  2. Simplify moles: nA=50003VARn_A = \frac{5000}{3} \frac{V_A}{R} nB=1000VARn_B = 1000 \frac{V_A}{R}
  3. Total volume Vtotal=VA+VB=VA+4VA=5VAV_{total} = V_A + V_B = V_A + 4V_A = 5V_A.
  4. Calculate partial pressures in the total volume, assuming gas A occupies volume VAV_A at TAT_A and gas B occupies volume VBV_B at TBT_B (a common simplification for finding total pressure): PfA=nARTAVtotal=(5×105)VAR×300R×3005VA=(5×105)VA5VA=105P_{fA} = \frac{n_A R T_A}{V_{total}} = \frac{\frac{(5 \times 10^5) V_A}{R \times 300} R \times 300}{5V_A} = \frac{(5 \times 10^5) V_A}{5V_A} = 10^5 Pa. PfB=nBRTBVtotal=(4×105)VAR×400R×4005VA=(4×105)VA5VA=0.8×105P_{fB} = \frac{n_B R T_B}{V_{total}} = \frac{\frac{(4 \times 10^5) V_A}{R \times 400} R \times 400}{5V_A} = \frac{(4 \times 10^5) V_A}{5V_A} = 0.8 \times 10^5 Pa.
  5. Sum partial pressures (Dalton's Law): Pfinal=PfA+PfB=105 Pa+0.8×105 Pa=1.8×105P_{final} = P_{fA} + P_{fB} = 10^5 \text{ Pa} + 0.8 \times 10^5 \text{ Pa} = 1.8 \times 10^5 Pa.