Solveeit Logo

Question

Question: The coefficient of friction between block of mass m and 2m is $\mu = 2 \tan \theta$. There is no fri...

The coefficient of friction between block of mass m and 2m is μ=2tanθ\mu = 2 \tan \theta. There is no friction between block of mass 2m and inclined plane. The maximum amplitude of two block system for which there is no relative motion between both the blocks.

Answer

3mgsinθk\frac{3mg \sin \theta}{k}

Explanation

Solution

The system oscillates with angular frequency ω=k3m\omega = \sqrt{\frac{k}{3m}}. For block 'm', the forces along the incline are gravity (mgsinθmg \sin \theta) and friction (fsf_s). The equation of motion for block 'm' is ma=mgsinθ±fsma = mg \sin \theta \pm f_s. At the extreme positions, the acceleration is a=±ω2Aa = \pm \omega^2 A.

At the lower extreme (maximum upward acceleration): m(ω2A)=mgsinθfsm(\omega^2 A) = mg \sin \theta - f_s (friction acts downwards on 'm' to oppose upward motion) fs=mgsinθmω2Af_s = mg \sin \theta - m\omega^2 A

At the upper extreme (maximum downward acceleration): m(ω2A)=mgsinθ+fsm(-\omega^2 A) = mg \sin \theta + f_s (friction acts upwards on 'm' to oppose downward motion) fs=mgsinθmω2Af_s = -mg \sin \theta - m\omega^2 A

Let's re-evaluate the forces. Up the incline is positive. a=ω2xa = -\omega^2 x. At x=Ax = -A (lower extreme), a=ω2Aa = \omega^2 A (upwards). Block 'm' tends to slide up relative to '2m'. So friction fsf_s on 'm' is downwards. ma=mgsinθfsma = mg \sin \theta - f_s m(ω2A)=mgsinθfsm(\omega^2 A) = mg \sin \theta - f_s fs=mgsinθmω2Af_s = mg \sin \theta - m\omega^2 A

At x=+Ax = +A (upper extreme), a=ω2Aa = -\omega^2 A (downwards). Block 'm' tends to slide down relative to '2m'. So friction fsf_s on 'm' is upwards. ma=mgsinθ+fsma = mg \sin \theta + f_s m(ω2A)=mgsinθ+fsm(-\omega^2 A) = mg \sin \theta + f_s fs=mgsinθmω2Af_s = -mg \sin \theta - m\omega^2 A

For no relative motion, fsfs,max|f_s| \le f_{s,max}. fs,max=μN=(2tanθ)(mgcosθ)=2mgsinθf_{s,max} = \mu N' = (2 \tan \theta)(mg \cos \theta) = 2mg \sin \theta.

From the lower extreme condition: mgsinθmω2A2mgsinθ|mg \sin \theta - m\omega^2 A| \le 2mg \sin \theta. 2mgsinθmgsinθmω2A2mgsinθ-2mg \sin \theta \le mg \sin \theta - m\omega^2 A \le 2mg \sin \theta. The right inequality: mgsinθmω2A2mgsinθ    mω2Amgsinθmg \sin \theta - m\omega^2 A \le 2mg \sin \theta \implies -m\omega^2 A \le mg \sin \theta, which is always true. The left inequality: 2mgsinθmgsinθmω2A    mω2A3mgsinθ    ω2A3gsinθ-2mg \sin \theta \le mg \sin \theta - m\omega^2 A \implies m\omega^2 A \le 3mg \sin \theta \implies \omega^2 A \le 3g \sin \theta.

From the upper extreme condition: mgsinθmω2A2mgsinθ|-mg \sin \theta - m\omega^2 A| \le 2mg \sin \theta. (mgsinθ+mω2A)2mgsinθ|-(mg \sin \theta + m\omega^2 A)| \le 2mg \sin \theta. mgsinθ+mω2A2mgsinθmg \sin \theta + m\omega^2 A \le 2mg \sin \theta. mω2Amgsinθm\omega^2 A \le mg \sin \theta. ω2Agsinθ\omega^2 A \le g \sin \theta.

The more restrictive condition is ω2Agsinθ\omega^2 A \le g \sin \theta. Maximum amplitude AmaxA_{max} is when ω2Amax=gsinθ\omega^2 A_{max} = g \sin \theta. Amax=gsinθω2=gsinθk/(3m)=3mgsinθkA_{max} = \frac{g \sin \theta}{\omega^2} = \frac{g \sin \theta}{k/(3m)} = \frac{3mg \sin \theta}{k}.