Solveeit Logo

Question

Question: An adiabatic vessel contains 3 moles of a diatomic gas. The r.m.s angular velocity is 5 × 1012 rad/ ...

An adiabatic vessel contains 3 moles of a diatomic gas. The r.m.s angular velocity is 5 × 1012 rad/ sec . Another adiabatic vessel contains 5 moles of a monatomic gas at a temperature 470 K. Assume gases to be ideal. Calculate rms angular velocity of diatomic molecules (in rad/sec.) when the two vessels are connected by a thin tube of negligible volume. Take Ik\frac{I}{k} = 2 × 10-23 S.I units.

Answer

6 × 1012 rad/sec.

Explanation

Solution

The RMS angular velocity (ωrms\omega_{rms}) is related to temperature (TT) by 12Iωrms2=kBT\frac{1}{2} I \omega_{rms}^2 = k_B T, so ωrms=2kBTI\omega_{rms} = \sqrt{\frac{2k_B T}{I}}. Given IkB=2×1023s2K\frac{I}{k_B} = 2 \times 10^{-23} s^2 \cdot K, we have kBI=0.5×10231s2K\frac{k_B}{I} = 0.5 \times 10^{23} \frac{1}{s^2 \cdot K}. Thus, ωrms=1023Ts2K\omega_{rms} = \sqrt{10^{23} \frac{T}{s^2 \cdot K}}.

  1. Initial Temperature (T1T_1) of Diatomic Gas: Using ωrms,1=5×1012\omega_{rms,1} = 5 \times 10^{12} rad/sec: (5×1012)2=1023T1s2K    T1=250(5 \times 10^{12})^2 = 10^{23} \frac{T_1}{s^2 \cdot K} \implies T_1 = 250 K.

  2. Initial Internal Energies: Diatomic gas (n1=3n_1=3, f1=5f_1=5): U1=n1f12RT1=3×52R×250=1875RU_1 = n_1 \frac{f_1}{2} R T_1 = 3 \times \frac{5}{2} R \times 250 = 1875R. Monatomic gas (n2=5n_2=5, f2=3f_2=3, T2=470T_2=470 K): U2=n2f22RT2=5×32R×470=3525RU_2 = n_2 \frac{f_2}{2} R T_2 = 5 \times \frac{3}{2} R \times 470 = 3525R. Total initial internal energy: Utotal,initial=1875R+3525R=5400RU_{total, initial} = 1875R + 3525R = 5400R.

  3. Final Equilibrium Temperature (TfT_f): Total moles ntotal=3+5=8n_{total} = 3+5=8. Utotal,final=(n1f12+n2f22)RTf=(152+152)RTf=15RTfU_{total, final} = (n_1 \frac{f_1}{2} + n_2 \frac{f_2}{2}) R T_f = (\frac{15}{2} + \frac{15}{2}) R T_f = 15 R T_f. Equating energies: 5400R=15RTf    Tf=3605400R = 15 R T_f \implies T_f = 360 K.

  4. Final RMS Angular Velocity: ωrms,final=1023360Ks2K=36×1024s2=6×1012\omega_{rms, final} = \sqrt{10^{23} \frac{360 K}{s^2 \cdot K}} = \sqrt{36 \times 10^{24} s^{-2}} = 6 \times 10^{12} rad/sec.