Question
Question: An adiabatic vessel contains 3 moles of a diatomic gas. The r.m.s angular velocity is 5 × 1012 rad/ ...
An adiabatic vessel contains 3 moles of a diatomic gas. The r.m.s angular velocity is 5 × 1012 rad/ sec . Another adiabatic vessel contains 5 moles of a monatomic gas at a temperature 470 K. Assume gases to be ideal. Calculate rms angular velocity of diatomic molecules (in rad/sec.) when the two vessels are connected by a thin tube of negligible volume. Take kI = 2 × 10-23 S.I units.

6 × 1012 rad/sec.
Solution
The RMS angular velocity (ωrms) is related to temperature (T) by 21Iωrms2=kBT, so ωrms=I2kBT. Given kBI=2×10−23s2⋅K, we have IkB=0.5×1023s2⋅K1. Thus, ωrms=1023s2⋅KT.
-
Initial Temperature (T1) of Diatomic Gas: Using ωrms,1=5×1012 rad/sec: (5×1012)2=1023s2⋅KT1⟹T1=250 K.
-
Initial Internal Energies: Diatomic gas (n1=3, f1=5): U1=n12f1RT1=3×25R×250=1875R. Monatomic gas (n2=5, f2=3, T2=470 K): U2=n22f2RT2=5×23R×470=3525R. Total initial internal energy: Utotal,initial=1875R+3525R=5400R.
-
Final Equilibrium Temperature (Tf): Total moles ntotal=3+5=8. Utotal,final=(n12f1+n22f2)RTf=(215+215)RTf=15RTf. Equating energies: 5400R=15RTf⟹Tf=360 K.
-
Final RMS Angular Velocity: ωrms,final=1023s2⋅K360K=36×1024s−2=6×1012 rad/sec.
