Solveeit Logo

Question

Question: The number of elements in the exhaustive set of values of x for which $f(x) = \sqrt[5]{x^2|x|^3} - \...

The number of elements in the exhaustive set of values of x for which f(x)=x2x35x2x31f(x) = \sqrt[5]{x^2|x|^3} - \sqrt[3]{x^2|x|} - 1 is not differentiable is

Answer

0

Explanation

Solution

We simplify the function f(x)f(x).

For the term x2x35\sqrt[5]{x^2|x|^3}: If x0x \ge 0, x2x35=x55=x\sqrt[5]{x^2 \cdot x^3} = \sqrt[5]{x^5} = x. If x<0x < 0, x2(x)35=x2(x3)5=x55=x\sqrt[5]{x^2 \cdot (-x)^3} = \sqrt[5]{x^2 \cdot (-x^3)} = \sqrt[5]{-x^5} = -x. Thus, x2x35=x\sqrt[5]{x^2|x|^3} = |x|.

For the term x2x3\sqrt[3]{x^2|x|}: If x0x \ge 0, x2x3=x33=x\sqrt[3]{x^2 \cdot x} = \sqrt[3]{x^3} = x. If x<0x < 0, x2(x)3=x33=x\sqrt[3]{x^2 \cdot (-x)} = \sqrt[3]{-x^3} = -x. Thus, x2x3=x\sqrt[3]{x^2|x|} = |x|.

Substituting these back into f(x)f(x): f(x)=xx1=1f(x) = |x| - |x| - 1 = -1.

The function f(x)=1f(x) = -1 is a constant function, which is differentiable everywhere. Therefore, there are no points where f(x)f(x) is not differentiable. The number of such points is 0.