Solveeit Logo

Question

Question: Range of the function $f(x) = \frac{x^2+x+2}{x^2+x+1}, x \in R$ is...

Range of the function f(x)=x2+x+2x2+x+1,xRf(x) = \frac{x^2+x+2}{x^2+x+1}, x \in R is

A

(1,)(1, \infty)

B

(1,117](1, \frac{11}{7}]

C

(1,73](1, \frac{7}{3}]

D

(1,75](1, \frac{7}{5}]

Answer

(1,73](1, \frac{7}{3}]

Explanation

Solution

The function f(x)=x2+x+2x2+x+1f(x) = \frac{x^2+x+2}{x^2+x+1} can be rewritten as 1+1x2+x+11 + \frac{1}{x^2+x+1}.

Let t=x2+x+1t = x^2+x+1. The minimum value of this quadratic expression occurs at x=1/2x=-1/2, which is tmin=(1/2)2+(1/2)+1=1/41/2+1=3/4t_{min} = (-1/2)^2+(-1/2)+1 = 1/4-1/2+1 = 3/4. So, t[3/4,)t \in [3/4, \infty).

Now, substitute this range into y=1+1ty = 1 + \frac{1}{t}.

As tt ranges from 3/43/4 to \infty, 1t\frac{1}{t} ranges from 13/4=43\frac{1}{3/4} = \frac{4}{3} down to 00 (exclusive). So, 1t(0,43]\frac{1}{t} \in (0, \frac{4}{3}].

Therefore, y=1+1t(1+0,1+43]=(1,73]y = 1 + \frac{1}{t} \in (1+0, 1+\frac{4}{3}] = (1, \frac{7}{3}].