Solveeit Logo

Question

Question: Let $OA = 3a$, $OB = 5a + 7b$ and $OC = 5b$ where O is Origin. If the area of Parallelogram with adj...

Let OA=3aOA = 3a, OB=5a+7bOB = 5a + 7b and OC=5bOC = 5b where O is Origin. If the area of Parallelogram with adjacent Sides OAOA and OCOC is 25 Sq units, then area of Quadrilateral OABCOABC (in Square units)

A

25

B

50

C

115/3

D

25/3

Answer

115/3

Explanation

Solution

The area of a parallelogram with adjacent sides u\vec{u} and v\vec{v} is given by u×v|\vec{u} \times \vec{v}|. We are given that the area of the parallelogram with adjacent sides OAOA and OCOC is 25 sq units. So, OA×OC=25|\vec{OA} \times \vec{OC}| = 25. Given OA=3a\vec{OA} = 3a and OC=5b\vec{OC} = 5b. (3a)×(5b)=25|(3a) \times (5b)| = 25 15(a×b)=25|15(a \times b)| = 25 15a×b=2515|a \times b| = 25 a×b=2515=53|a \times b| = \frac{25}{15} = \frac{5}{3}.

The area of a quadrilateral OABCOABC can be calculated as the sum of the areas of two triangles, OAB\triangle OAB and OBC\triangle OBC. Area(OABCOABC) = Area(OAB\triangle OAB) + Area(OBC\triangle OBC).

The area of OAB\triangle OAB is 12OA×OB\frac{1}{2} |\vec{OA} \times \vec{OB}|. OA×OB=(3a)×(5a+7b)\vec{OA} \times \vec{OB} = (3a) \times (5a + 7b) =(3a×5a)+(3a×7b)= (3a \times 5a) + (3a \times 7b) =15(a×a)+21(a×b)= 15(a \times a) + 21(a \times b) Since a×a=0a \times a = 0, this becomes 21(a×b)21(a \times b). Area(OAB\triangle OAB) = 1221(a×b)=212a×b\frac{1}{2} |21(a \times b)| = \frac{21}{2} |a \times b|.

The area of OBC\triangle OBC is 12OB×OC\frac{1}{2} |\vec{OB} \times \vec{OC}|. OB×OC=(5a+7b)×(5b)\vec{OB} \times \vec{OC} = (5a + 7b) \times (5b) =(5a×5b)+(7b×5b)= (5a \times 5b) + (7b \times 5b) =25(a×b)+35(b×b)= 25(a \times b) + 35(b \times b) Since b×b=0b \times b = 0, this becomes 25(a×b)25(a \times b). Area(OBC\triangle OBC) = 1225(a×b)=252a×b\frac{1}{2} |25(a \times b)| = \frac{25}{2} |a \times b|.

Total Area(OABCOABC) = Area(OAB\triangle OAB) + Area(OBC\triangle OBC) =212a×b+252a×b= \frac{21}{2} |a \times b| + \frac{25}{2} |a \times b| =462a×b=23a×b= \frac{46}{2} |a \times b| = 23 |a \times b|.

Substitute the value a×b=53|a \times b| = \frac{5}{3}: Area(OABCOABC) = 23×53=115323 \times \frac{5}{3} = \frac{115}{3}.