Solveeit Logo

Question

Question: If the value of $\alpha \in [0, 2\pi]$such that the inequality $\sin(\frac{\pi}{3} + x) + \sin(\alph...

If the value of α[0,2π]\alpha \in [0, 2\pi]such that the inequality sin(π3+x)+sin(α+x)0\sin(\frac{\pi}{3} + x) + \sin(\alpha + x) \ge 0 is true for all the real number xx, is equal to pπq\frac{p\pi}{q} where pp and qq are relatively prime positive integers, then the value of (p+q)(p + q) is

Answer

7

Explanation

Solution

Using the sum-to-product formula sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right), the inequality becomes 2sin(π3+α2+x)cos(π3α2)02 \sin\left(\frac{\frac{\pi}{3} + \alpha}{2} + x\right) \cos\left(\frac{\frac{\pi}{3} - \alpha}{2}\right) \ge 0. For this to hold for all xx, we must have cos(π3α2)=0\cos\left(\frac{\frac{\pi}{3} - \alpha}{2}\right) = 0. This implies π3α2=(2n+1)π2\frac{\frac{\pi}{3} - \alpha}{2} = (2n+1)\frac{\pi}{2}, so π3α=(2n+1)π\frac{\pi}{3} - \alpha = (2n+1)\pi, which gives α=π3(2n+1)π\alpha = \frac{\pi}{3} - (2n+1)\pi. For α[0,2π]\alpha \in [0, 2\pi], the only solution is α=4π3\alpha = \frac{4\pi}{3} (when n=1n=-1). Comparing 4π3\frac{4\pi}{3} with pπq\frac{p\pi}{q}, we get p=4p=4 and q=3q=3. Thus, p+q=4+3=7p+q = 4+3=7.