Solveeit Logo

Question

Question: If $\overline{a}$ and $\overline{b}$ are non-Collinear vectors such that $|\overline{a}|= 2\sqrt{2}$...

If a\overline{a} and b\overline{b} are non-Collinear vectors such that a=22|\overline{a}|= 2\sqrt{2}, b=3|\overline{b}|= 3 and angle between a\overline{a} & b\overline{b} is π4\frac{\pi}{4}. If 5a+2b5\overline{a} + 2\overline{b} and a3b\overline{a} - 3\overline{b} are adjacent sides of a parallelogram then its area in square units is

Answer

102

Explanation

Solution

The area of a parallelogram with adjacent sides represented by vectors u\overline{u} and v\overline{v} is given by u×v|\overline{u} \times \overline{v}|. Given adjacent sides are u=5a+2b\overline{u} = 5\overline{a} + 2\overline{b} and v=a3b\overline{v} = \overline{a} - 3\overline{b}. The cross product is: u×v=(5a+2b)×(a3b)\overline{u} \times \overline{v} = (5\overline{a} + 2\overline{b}) \times (\overline{a} - 3\overline{b}) Using the distributive property and properties of the cross product (a×a=0\overline{a} \times \overline{a} = \overline{0}, b×b=0\overline{b} \times \overline{b} = \overline{0}, b×a=a×b\overline{b} \times \overline{a} = -\overline{a} \times \overline{b}): u×v=5(a×a)15(a×b)+2(b×a)6(b×b)\overline{u} \times \overline{v} = 5(\overline{a} \times \overline{a}) - 15(\overline{a} \times \overline{b}) + 2(\overline{b} \times \overline{a}) - 6(\overline{b} \times \overline{b}) u×v=015(a×b)+2(a×b)0\overline{u} \times \overline{v} = \overline{0} - 15(\overline{a} \times \overline{b}) + 2(-\overline{a} \times \overline{b}) - \overline{0} u×v=17(a×b)\overline{u} \times \overline{v} = -17(\overline{a} \times \overline{b}) The area of the parallelogram is the magnitude of this cross product: Area=u×v=17(a×b)=17a×b\text{Area} = |\overline{u} \times \overline{v}| = |-17(\overline{a} \times \overline{b})| = 17 |\overline{a} \times \overline{b}| The magnitude of the cross product a×b|\overline{a} \times \overline{b}| is given by absinθ|\overline{a}| |\overline{b}| \sin\theta, where θ\theta is the angle between a\overline{a} and b\overline{b}. Given: a=22|\overline{a}| = 2\sqrt{2}, b=3|\overline{b}| = 3, and θ=π4\theta = \frac{\pi}{4}. a×b=(22)(3)sin(π4)=62(12)=6|\overline{a} \times \overline{b}| = (2\sqrt{2})(3) \sin\left(\frac{\pi}{4}\right) = 6\sqrt{2} \left(\frac{1}{\sqrt{2}}\right) = 6 Substituting this value back into the area formula: Area=17×6=102\text{Area} = 17 \times 6 = 102