Solveeit Logo

Question

Question: Let $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ are...

Let a=i^+j^+k^\overline{a} = \hat{i} + \hat{j} + \hat{k}, b=2i^j^+3k^\overline{b} = 2\hat{i} - \hat{j} + 3\hat{k} are two vectors then a vector perpendicular to a+b\overline{a} + \overline{b} and ab\overline{a} - \overline{b} and has magnitude 3263\sqrt{26} is

Answer

12\hat{i} - 3\hat{j} - 9\hat{k}

Explanation

Solution

  1. Calculate the sum and difference of vectors a\overline{a} and b\overline{b}: a+b=(i^+j^+k^)+(2i^j^+3k^)=3i^+4k^\overline{a} + \overline{b} = (\hat{i} + \hat{j} + \hat{k}) + (2\hat{i} - \hat{j} + 3\hat{k}) = 3\hat{i} + 4\hat{k} ab=(i^+j^+k^)(2i^j^+3k^)=i^+2j^2k^\overline{a} - \overline{b} = (\hat{i} + \hat{j} + \hat{k}) - (2\hat{i} - \hat{j} + 3\hat{k}) = -\hat{i} + 2\hat{j} - 2\hat{k}

  2. A vector perpendicular to two vectors u\overline{u} and v\overline{v} is given by their cross product u×v\overline{u} \times \overline{v}. The vector perpendicular to (a+b)(\overline{a} + \overline{b}) and (ab)(\overline{a} - \overline{b}) is proportional to (a+b)×(ab)(\overline{a} + \overline{b}) \times (\overline{a} - \overline{b}). Using vector properties, (a+b)×(ab)=a×aa×b+b×ab×b=0(a×b)(a×b)0=2(a×b)(\overline{a} + \overline{b}) \times (\overline{a} - \overline{b}) = \overline{a} \times \overline{a} - \overline{a} \times \overline{b} + \overline{b} \times \overline{a} - \overline{b} \times \overline{b} = \overline{0} - (\overline{a} \times \overline{b}) - (\overline{a} \times \overline{b}) - \overline{0} = -2(\overline{a} \times \overline{b}). Thus, the required vector is in the direction of a×b\overline{a} \times \overline{b}.

  3. Calculate the cross product a×b\overline{a} \times \overline{b}: a×b=i^j^k^111213=(3(1))i^(32)j^+(12)k^=4i^j^3k^\overline{a} \times \overline{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & -1 & 3 \end{vmatrix} = (3 - (-1))\hat{i} - (3 - 2)\hat{j} + (-1 - 2)\hat{k} = 4\hat{i} - \hat{j} - 3\hat{k}.

  4. Calculate the magnitude of a×b\overline{a} \times \overline{b}: a×b=4i^j^3k^=42+(1)2+(3)2=16+1+9=26|\overline{a} \times \overline{b}| = |4\hat{i} - \hat{j} - 3\hat{k}| = \sqrt{4^2 + (-1)^2 + (-3)^2} = \sqrt{16 + 1 + 9} = \sqrt{26}.

  5. The required vector, let's call it V\overline{V}, must have a magnitude of 3263\sqrt{26} and be in the direction of a×b\overline{a} \times \overline{b}. So, V=k(a×b)\overline{V} = k (\overline{a} \times \overline{b}) for some scalar kk. The magnitude is V=ka×b|\overline{V}| = |k| |\overline{a} \times \overline{b}|. Given V=326|\overline{V}| = 3\sqrt{26}, we have 326=k263\sqrt{26} = |k| \sqrt{26}. This implies k=3|k| = 3, so k=3k = 3 or k=3k = -3.

  6. For k=3k=3: V=3(4i^j^3k^)=12i^3j^9k^\overline{V} = 3(4\hat{i} - \hat{j} - 3\hat{k}) = 12\hat{i} - 3\hat{j} - 9\hat{k}. Magnitude: 12i^3j^9k^=122+(3)2+(9)2=144+9+81=234=9×26=326|12\hat{i} - 3\hat{j} - 9\hat{k}| = \sqrt{12^2 + (-3)^2 + (-9)^2} = \sqrt{144 + 9 + 81} = \sqrt{234} = \sqrt{9 \times 26} = 3\sqrt{26}.

  7. For k=3k=-3: V=3(4i^j^3k^)=12i^+3j^+9k^\overline{V} = -3(4\hat{i} - \hat{j} - 3\hat{k}) = -12\hat{i} + 3\hat{j} + 9\hat{k}. Magnitude: 12i^+3j^+9k^=(12)2+32+92=144+9+81=234=326|-12\hat{i} + 3\hat{j} + 9\hat{k}| = \sqrt{(-12)^2 + 3^2 + 9^2} = \sqrt{144 + 9 + 81} = \sqrt{234} = 3\sqrt{26}.

Both vectors satisfy the conditions. The question asks for "a vector". One such vector is 12i^3j^9k^12\hat{i} - 3\hat{j} - 9\hat{k}.