Question
Question: Let $\overline{a} = \hat{i} + \hat{j} + \hat{k}$, $\overline{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ are...
Let a=i^+j^+k^, b=2i^−j^+3k^ are two vectors then a vector perpendicular to a+b and a−b and has magnitude 326 is

12\hat{i} - 3\hat{j} - 9\hat{k}
Solution
-
Calculate the sum and difference of vectors a and b: a+b=(i^+j^+k^)+(2i^−j^+3k^)=3i^+4k^ a−b=(i^+j^+k^)−(2i^−j^+3k^)=−i^+2j^−2k^
-
A vector perpendicular to two vectors u and v is given by their cross product u×v. The vector perpendicular to (a+b) and (a−b) is proportional to (a+b)×(a−b). Using vector properties, (a+b)×(a−b)=a×a−a×b+b×a−b×b=0−(a×b)−(a×b)−0=−2(a×b). Thus, the required vector is in the direction of a×b.
-
Calculate the cross product a×b: a×b=i^12j^1−1k^13=(3−(−1))i^−(3−2)j^+(−1−2)k^=4i^−j^−3k^.
-
Calculate the magnitude of a×b: ∣a×b∣=∣4i^−j^−3k^∣=42+(−1)2+(−3)2=16+1+9=26.
-
The required vector, let's call it V, must have a magnitude of 326 and be in the direction of a×b. So, V=k(a×b) for some scalar k. The magnitude is ∣V∣=∣k∣∣a×b∣. Given ∣V∣=326, we have 326=∣k∣26. This implies ∣k∣=3, so k=3 or k=−3.
-
For k=3: V=3(4i^−j^−3k^)=12i^−3j^−9k^. Magnitude: ∣12i^−3j^−9k^∣=122+(−3)2+(−9)2=144+9+81=234=9×26=326.
-
For k=−3: V=−3(4i^−j^−3k^)=−12i^+3j^+9k^. Magnitude: ∣−12i^+3j^+9k^∣=(−12)2+32+92=144+9+81=234=326.
Both vectors satisfy the conditions. The question asks for "a vector". One such vector is 12i^−3j^−9k^.