Question
Question: The value of $\lim_{x \to (\frac{\pi}{10})^{+}} (\tan(\frac{3\pi}{10}+x))^{\tan 5x}$ is...
The value of limx→(10π)+(tan(103π+x))tan5x is

1
0
e
e1
1
Solution
Let the limit be L. L=limx→(10π)+(tan(103π+x))tan5x This is an indeterminate form of the type BE. We use the property limx→af(x)g(x)=elimx→ag(x)lnf(x). Let y=x−10π. As x→(10π)+, we have y→0+. Then x=y+10π. The exponent becomes tan(5x)=tan(5(y+10π))=tan(2π+5y)=−cot(5y). The base becomes tan(103π+x)=tan(103π+y+10π)=tan(52π+y). So we need to evaluate the limit of the logarithm: lnL=limy→0+tan(5x)ln(tan(103π+x)) lnL=limy→0+(−cot(5y))ln(tan(52π+y)) This is of the indeterminate form ∞⋅ln(B) where B=tan(52π)>1. We rewrite it as: lnL=limy→0+cot(5y)−ln(tan(52π+y)) This is of the form ∞−ln(tan(52π)), which approaches 0. Alternatively, using L'Hopital's Rule: Let N(y)=−ln(tan(52π+y)) and D(y)=cot(5y). N′(y)=−tan(52π+y)1⋅sec2(52π+y)=−tan(52π+y)sec2(52π+y). D′(y)=−5csc2(5y). limy→0+D′(y)N′(y)=limy→0+−5csc2(5y)−tan(52π+y)sec2(52π+y)=limy→0+5tan(52π+y)csc2(5y)sec2(52π+y) =limy→0+5tan(52π+y)sec2(52π+y)sin2(5y) As y→0+, sin(5y)≈5y, so sin2(5y)≈25y2. The limit becomes: limy→0+5tan(52π)sec2(52π)(25y2)=0 So, lnL=0. Therefore, L=e0=1.
