Solveeit Logo

Question

Question: $\lim_{x \to 0^+} ((x \cos x)^x + (x \sin x)^{1/x}) =$...

limx0+((xcosx)x+(xsinx)1/x)=\lim_{x \to 0^+} ((x \cos x)^x + (x \sin x)^{1/x}) =

Answer

1

Explanation

Solution

The limit is evaluated by splitting it into two parts: L1=limx0+(xcosx)xL_1 = \lim_{x \to 0^+} (x \cos x)^x L2=limx0+(xsinx)1/xL_2 = \lim_{x \to 0^+} (x \sin x)^{1/x} For L1L_1, let y=(xcosx)xy = (x \cos x)^x. Then lny=xln(xcosx)=xlnx+xln(cosx)\ln y = x \ln(x \cos x) = x \ln x + x \ln(\cos x). Using L'Hopital's rule for limx0+xlnx=limx0+lnx1/x=limx0+1/x1/x2=0\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = 0. Also, limx0+xln(cosx)=0ln(1)=0\lim_{x \to 0^+} x \ln(\cos x) = 0 \cdot \ln(1) = 0. So, limx0+lny=0\lim_{x \to 0^+} \ln y = 0, which means L1=e0=1L_1 = e^0 = 1.

For L2L_2, let z=(xsinx)1/xz = (x \sin x)^{1/x}. Then lnz=1xln(xsinx)=lnx+ln(sinx)x\ln z = \frac{1}{x} \ln(x \sin x) = \frac{\ln x + \ln(\sin x)}{x}. As x0+x \to 0^+, the numerator lnx+ln(sinx)\ln x + \ln(\sin x) \to -\infty and the denominator x0+x \to 0^+. Thus, limx0+lnz=\lim_{x \to 0^+} \ln z = -\infty, which means L2=e=0L_2 = e^{-\infty} = 0.

The total limit is L1+L2=1+0=1L_1 + L_2 = 1 + 0 = 1.