Question
Question: Let $f(x) = x^2 \cos x - 2x \sin x - 2 \cos x$, $g(x) = x^3 + x^2 \sin x + 2x \cos x - 2 \sin x$. L...
Let f(x)=x2cosx−2xsinx−2cosx, g(x)=x3+x2sinx+2xcosx−2sinx.
Let L2=limx→∞g′(x)f′(x), L1=limx→∞g(x)f(x). Then select incorrect alternative/s.

L1=0
L2 does not exist
L1=L2
L1=1/3
L1 = L2, L1 = 1/3
Solution
We first find the derivatives of f(x) and g(x): f′(x)=dxd(x2cosx−2xsinx−2cosx)=(2xcosx−x2sinx)−(2sinx+2xcosx)−(−2sinx)=−x2sinx. g′(x)=dxd(x3+x2sinx+2xcosx−2sinx)=3x2+(2xsinx+x2cosx)+(2cosx−2xsinx)−(2cosx)=3x2+x2cosx=x2(3+cosx).
Now, we compute L2: L2=limx→∞g′(x)f′(x)=limx→∞x2(3+cosx)−x2sinx=limx→∞3+cosx−sinx. Since sinx and cosx oscillate between -1 and 1, and 3+cosx is always between 2 and 4, the limit L2 does not exist.
Next, we compute L1: L1=limx→∞g(x)f(x)=limx→∞x3+x2sinx+2xcosx−2sinxx2cosx−2xsinx−2cosx. Divide numerator and denominator by x3: L1=limx→∞1+xsinx+x22cosx−x32sinxxcosx−x22sinx−x32cosx. As x→∞, all terms with x in the denominator go to 0. L1=1+0+0−00−0−0=0.
So, L1=0 and L2 does not exist. The incorrect alternatives are those stating that L1=L2 (since L2 does not exist and L1=0) and L1=1/3 (since L1=0).
