Solveeit Logo

Question

Question: Let $f(x) = x^2 \cos x - 2x \sin x - 2 \cos x$, $g(x) = x^3 + x^2 \sin x + 2x \cos x - 2 \sin x$. L...

Let f(x)=x2cosx2xsinx2cosxf(x) = x^2 \cos x - 2x \sin x - 2 \cos x, g(x)=x3+x2sinx+2xcosx2sinxg(x) = x^3 + x^2 \sin x + 2x \cos x - 2 \sin x.

Let L2=limxf(x)g(x)L_2 = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}, L1=limxf(x)g(x)L_1 = \lim_{x \to \infty} \frac{f(x)}{g(x)}. Then select incorrect alternative/s.

A

L1=0L_1 = 0

B

L2L_2 does not exist

C

L1=L2L_1 = L_2

D

L1=1/3L_1 = 1/3

Answer

L1 = L2, L1 = 1/3

Explanation

Solution

We first find the derivatives of f(x)f(x) and g(x)g(x): f(x)=ddx(x2cosx2xsinx2cosx)=(2xcosxx2sinx)(2sinx+2xcosx)(2sinx)=x2sinxf'(x) = \frac{d}{dx}(x^2 \cos x - 2x \sin x - 2 \cos x) = (2x \cos x - x^2 \sin x) - (2 \sin x + 2x \cos x) - (-2 \sin x) = -x^2 \sin x. g(x)=ddx(x3+x2sinx+2xcosx2sinx)=3x2+(2xsinx+x2cosx)+(2cosx2xsinx)(2cosx)=3x2+x2cosx=x2(3+cosx)g'(x) = \frac{d}{dx}(x^3 + x^2 \sin x + 2x \cos x - 2 \sin x) = 3x^2 + (2x \sin x + x^2 \cos x) + (2 \cos x - 2x \sin x) - (2 \cos x) = 3x^2 + x^2 \cos x = x^2(3 + \cos x).

Now, we compute L2L_2: L2=limxf(x)g(x)=limxx2sinxx2(3+cosx)=limxsinx3+cosxL_2 = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = \lim_{x \to \infty} \frac{-x^2 \sin x}{x^2(3 + \cos x)} = \lim_{x \to \infty} \frac{-\sin x}{3 + \cos x}. Since sinx\sin x and cosx\cos x oscillate between -1 and 1, and 3+cosx3 + \cos x is always between 2 and 4, the limit L2L_2 does not exist.

Next, we compute L1L_1: L1=limxf(x)g(x)=limxx2cosx2xsinx2cosxx3+x2sinx+2xcosx2sinxL_1 = \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2 \cos x - 2x \sin x - 2 \cos x}{x^3 + x^2 \sin x + 2x \cos x - 2 \sin x}. Divide numerator and denominator by x3x^3: L1=limxcosxx2sinxx22cosxx31+sinxx+2cosxx22sinxx3L_1 = \lim_{x \to \infty} \frac{\frac{\cos x}{x} - \frac{2 \sin x}{x^2} - \frac{2 \cos x}{x^3}}{1 + \frac{\sin x}{x} + \frac{2 \cos x}{x^2} - \frac{2 \sin x}{x^3}}. As xx \to \infty, all terms with xx in the denominator go to 0. L1=0001+0+00=0L_1 = \frac{0 - 0 - 0}{1 + 0 + 0 - 0} = 0.

So, L1=0L_1 = 0 and L2L_2 does not exist. The incorrect alternatives are those stating that L1=L2L_1 = L_2 (since L2L_2 does not exist and L1=0L_1=0) and L1=1/3L_1 = 1/3 (since L1=0L_1=0).