Solveeit Logo

Question

Question: p<sup>th</sup> term of the series \(\left( 3 - \frac { 1 } { n } \right) + \left( 3 - \frac { 2 } {...

pth term of the series (31n)+(32n)+(33n)+\left( 3 - \frac { 1 } { n } \right) + \left( 3 - \frac { 2 } { n } \right) + \left( 3 - \frac { 3 } { n } \right) + \ldots will be.

A

(3+pn)\left( 3 + \frac { p } { n } \right)

B

(3pn)\left( 3 - \frac { p } { n } \right)

C

(3+np)\left( 3 + \frac { n } { p } \right)

D

(3np)\left( 3 - \frac { n } { p } \right)

Answer

(3pn)\left( 3 - \frac { p } { n } \right)

Explanation

Solution

Given series (31n)+(32n)+(33n)+\left( 3 - \frac { 1 } { n } \right) + \left( 3 - \frac { 2 } { n } \right) + \left( 3 - \frac { 3 } { n } \right) + \ldots \ldots \ldots (A.P.)

Therefore common difference

d=(32n)(31n)=1nd = \left( 3 - \frac { 2 } { n } \right) - \left( 3 - \frac { 1 } { n } \right) = - \frac { 1 } { n } and first term a=(31n)a = \left( 3 - \frac { 1 } { n } \right)

Now pthp ^ { t h } term of the series =a+(p1)d= a + ( p - 1 ) d

=(31n)+(p1)(1n)=31n+1npn=(3pn)= \left( 3 - \frac { 1 } { n } \right) + ( p - 1 ) \left( - \frac { 1 } { n } \right) = 3 - \frac { 1 } { n } + \frac { 1 } { n } - \frac { p } { n } = \left( 3 - \frac { p } { n } \right) .

Trick : This question can also be done by inspection first 1n- \frac { 1 } { n }, second 2n- \frac { 2 } { n }, third 3n- \frac { 3 } { n } , therefore, pthp ^ { t h } will be pn- \frac { p } { n }. Hence the result (3 is constant).