Solveeit Logo

Question

Question: p<sub>1</sub>, p<sub>2</sub> are lengths of perpendicular from foci on tangent to ellipse and p<sub>...

p1, p2 are lengths of perpendicular from foci on tangent to ellipse and p3, p4 are perpendiculars from extremities of major axis and p from centre of ellipse on same tangent, then p1p2p2p3p4p2\frac{p_{1}p_{2} - p^{2}}{p_{3}p_{4} - p^{2}} equals

A

e

B

e\sqrt{e}

C

e2

D

None of these

Answer

e2

Explanation

Solution

Let tangent is y = mx + c

\ p = cm2+1\frac{c}{\sqrt{m^{2} + 1}}, p1 = c+aem1+m2\left| \frac{c + aem}{\sqrt{1 + m^{2}}} \right|,

p2 = caem1+m2\frac{|c–aem|}{\sqrt{1 + m^{2}}}, p3 = am+c1+m2\frac{|am + c|}{\sqrt{1 + m^{2}}},

p4 = cam1+m2\frac{|c–am|}{\sqrt{1 + m^{2}}}

Now put values in p1p2p2p3p4p2\frac{p_{1}p_{2} - p^{2}}{p_{3}p_{4} - p^{2}}