Solveeit Logo

Question

Question: Prove using the principle of mathematical induction \[n \in {\text{N: }}n\left( {n + 1} \right)\left...

Prove using the principle of mathematical induction nN: n(n+1)(n+5)n \in {\text{N: }}n\left( {n + 1} \right)\left( {n + 5} \right) is a multiple of 33.

Explanation

Solution

Here, we will use the principle of mathematical induction which normally used to prove that any statement P(n)P\left( n \right) holds for every natural number n=0,1,2,3,....n = 0,1,2,3,.... , that is, the overall statement is a sequence of infinitely many cases P(0)P\left( 0 \right) , P(1)P\left( 1 \right) , P(2)P\left( 2 \right) , …...

Formula used:
Complete step-by-step answer:
Step 1: We know that if a number is a multiple of 33 , then it will come in the table 33 as shown below:

3×1=3 3×2=6 3×3=9 3×4=12 3 \times 1 = 3 \\\ 3 \times 2 = 6 \\\ 3 \times 3 = 9 \\\ 3 \times 4 = 12

……..
\Rightarrow Any number which is a multiple
33 will be equal to the product of any natural number 33.
3=3×N\Rightarrow 3 = 3 \times {\text{N}} , where N{\text{N}} is the natural number.
Step 2: Suppose, P(n):n(n+1)(n+5)=3dP\left( n \right):n\left( {n + 1} \right)\left( {n + 5} \right) = 3d, where dNd \in {\text{N}}.
Now, by substituting the values of n=1n = 1 in the equation P(n):n(n+1)(n+5)=3dP\left( n \right):n\left( {n + 1} \right)\left( {n + 5} \right) = 3d , we get:
P(1):1(1+1)(1+5)=3d\Rightarrow P\left( 1 \right):1\left( {1 + 1} \right)\left( {1 + 5} \right) = 3d
By solving the LHS side:
L.H.S = 1(2)(6)\Rightarrow {\text{L}}.{\text{H}}.{\text{S = }}1\left( 2 \right)\left( 6 \right)
By doing multiplication, we get:
L.H.S = 12\Rightarrow {\text{L}}.{\text{H}}.{\text{S = 12}}
We can write 1212 as a multiple of 33 as shown below:
L.H.S = 3×(4)\Rightarrow {\text{L}}.{\text{H}}.{\text{S = 3}} \times \left( {\text{4}} \right)
3×(4)=3d\Rightarrow {\text{3}} \times \left( {\text{4}} \right) = 3d, where d=4d = 4.
L.H.S = R.H.S\Rightarrow {\text{L}}.{\text{H}}.{\text{S = R}}{\text{.H}}{\text{.S}}
We can say that P(n)P\left( n \right) is true for n=1n = 1.
Step 3: Now we need to prove it for n=kn = k where kNk \in {\text{N}}.
Let’s assume that P(k)P\left( k \right) is true:
Now we can write the above-given expression P(n):n(n+1)(n+5)=3dP\left( n \right):n\left( {n + 1} \right)\left( {n + 5} \right) = 3d as below:
k(k+1)(k+5)=3d\Rightarrow k\left( {k + 1} \right)\left( {k + 5} \right) = 3d where kNk \in {\text{N}}
By multiplying kk with k+1k + 1 we get:
(k2+k)(k+5)=3d\Rightarrow \left( {{k^2} + k} \right)\left( {k + 5} \right) = 3d
Now by multiplying the brackets into the LHS side of the above equation, we get:
k2(k+5)+k(k+5)=3d\Rightarrow {k^2}\left( {k + 5} \right) + k\left( {k + 5} \right) = 3d
k3+5k2+k2+5k=3d\Rightarrow {k^3} + 5{k^2} + {k^2} + 5k = 3d
By adding the coefficients of k2{k^2} , we get:
k3+6k2+5k=3d\Rightarrow {k^3} + 6{k^2} + 5k = 3d ……………… (1)
Step 4: Now we will prove that P(k+1)P\left( {k + 1} \right) is true:
By substituting the value of n=k+1n = k + 1 in the equation P(n):n(n+1)(n+5)=3dP\left( n \right):n\left( {n + 1} \right)\left( {n + 5} \right) = 3d, we get:
P(k+1):(k+1)((k+1)+1)((k+1)+5)=3dP\left( {k + 1} \right):\left( {k + 1} \right)\left( {\left( {k + 1} \right) + 1} \right)\left( {\left( {k + 1} \right) + 5} \right) = 3d
By only solving LHS side:
L.H.S=(k+1)(k+2)(k+6)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = \left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 6} \right)
By doing multiplication of the first two brackets in the expression L.H.S=(k+1)(k+2)(k+6){\text{L}}.{\text{H}}.{\text{S}} = \left( {k + 1} \right)\left( {k + 2} \right)\left( {k + 6} \right), we get:
L.H.S=(k2+2k+k+2)(k+6)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = \left( {{k^2} + 2k + k + 2} \right)\left( {k + 6} \right)
L.H.S=(k2+3k+2)(k+6)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = \left( {{k^2} + 3k + 2} \right)\left( {k + 6} \right)
By doing multiplication of pending brackets, we get:
L.H.S=(k3+3k2+2k+6k2+18k+12)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = \left( {{k^3} + 3{k^2} + 2k + 6{k^2} + 18k + 12} \right)
By adding coefficients of k2{k^2} and kk, we get:
L.H.S=(k3+9k2+20k+12)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = \left( {{k^3} + 9{k^2} + 20k + 12} \right)
Now from the equation (1), we will find the value of k3{k^3} and substituting it in the expression L.H.S=(k3+9k2+20k+12){\text{L}}.{\text{H}}.{\text{S}} = \left( {{k^3} + 9{k^2} + 20k + 12} \right) , we get:
k3=3d6k25k\Rightarrow {k^3} = 3d - 6{k^2} - 5k (from equation (1))
L.H.S=(3d6k25k)+9k2+20k+12\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = \left( {3d - 6{k^2} - 5k} \right) + 9{k^2} + 20k + 12
By opening the brackets and doing simple addition and subtraction, we get:
L.H.S=3d6k2+9k25k+20k+12\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = 3d - 6{k^2} + 9{k^2} - 5k + 20k + 12
L.H.S=3d+3k2+15k+12\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = 3d + 3{k^2} + 15k + 12
Taking 33 common from the above expression we get:
L.H.S=3(d+k2+5k+4)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = 3\left( {d + {k^2} + 5k + 4} \right)
L.H.S=3(m)\Rightarrow {\text{L}}.{\text{H}}.{\text{S}} = 3\left( m \right) , where m=(d+k2+5k+4)m = \left( {d + {k^2} + 5k + 4} \right) which is a natural number.
P(k+1)\therefore P\left( {k + 1} \right)is true whenever P(k)P\left( k \right) is true.
From here, we can say that P(n)P\left( n \right) is true for all-natural numbers.

Hence proved that nN: n(n+1)(n+5)n \in {\text{N: }}n\left( {n + 1} \right)\left( {n + 5} \right) is a multiple of 33.

Note: Students needs to remember the below principles of mathematical induction:
Let’s consider a given statement P(n)P\left( n \right) involving natural number nn , so that:
The statement is true for n=1n = 1 i.e. P(1)P\left( 1 \right) is true, and
If the statement is true for n=kn = k, where kk is a positive integer, then the statement is also true for all cases of n=k+1n = k + 1, P(k)P\left( k \right) leads to the truth of P(k+1)P\left( {k + 1} \right).
This means that P(n)P\left( n \right) is true for all the natural numbers, nn.