Solveeit Logo

Question

Question: Prove the trigonometric identity: \(\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\c...

Prove the trigonometric identity: cos11sin11cos11+sin11=cot56\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot {{56}^{\circ }}

Explanation

Solution

Hint: Convert cosine functions involved in the expression to sine functions using the identity cos(90θ)=sinθ.\cos \left( 90-\theta \right)=\sin \theta . Now, use identities of sinCsinD\sin C-\sin D and sinC+sinD\sin C+\sin D to get the Right hand side.

Complete step by step solution:
We have to prove,
cos11sin11cos11+sin11=cot56.................(i)\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}=\cot 56.................\left( i \right)
As we need to prove the above equation, we can simplify the left hand side of the equation to equate it to the right hand side.
LHS=cos11sin11cos11+sin11.................(ii)LHS=\dfrac{\cos {{11}^{\circ }}-\sin {{11}^{\circ }}}{\cos {{11}^{\circ }}+\sin {{11}^{\circ }}}.................\left( ii \right)
Now we can make the whole equation is sine function only by converting cosine to sine by using the formula,
cos(90θ)=sinθ..................(iii)\cos \left( 90-\theta \right)=\sin \theta ..................\left( iii \right)
So, we can write cos11\cos {{11}^{\circ }} as cos(9079)\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right) and hence, using the equation (iii) we get,
cos11=cos(9079)=sin79..............(iv)\cos {{11}^{\circ }}=\cos \left( {{90}^{\circ }}-{{79}^{\circ }} \right)=\sin {{79}^{\circ }}..............\left( iv \right)
Now replace cos11\cos {{11}^{\circ }} from the equation (ii) by using equation (iv). Hence we get,
LHS=sin79sin11sin79+sin11.................(v)LHS=\dfrac{\sin {{79}^{\circ }}-\sin {{11}^{\circ }}}{\sin {{79}^{\circ }}+\sin {{11}^{\circ }}}.................\left( v \right)
Now, we can use trigonometric identity of sinAsinB\sin A-\sin B and sinA+sinB\sin A+\sin B to evaluate the value of expression in equation (v). Hence, identities of sinAsinB\sin A-\sin B and sinA+sinB\sin A+\sin B can be given as,
sinAsinB=2sinAB2cosA+B2\sin A-\sin B=2\sin \dfrac{A-B}{2}\cos \dfrac{A+B}{2}
sinA+sinB=2sinA+B2cosAB2\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}
Hence, we can simplify equation (V) by using the above identities. Hence, we get
LHS=2sin(79112)cos(79+112)2sin(79+112)cos(79112)LHS=\dfrac{2\sin \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)}{2\sin \left( \dfrac{{{79}^{\circ }}+{{11}^{\circ }}}{2} \right)\cos \left( \dfrac{{{79}^{\circ }}-{{11}^{\circ }}}{2} \right)}
LHS=sin(682)cos(902)sin(902)cos(682)LHS=\dfrac{\sin \left( \dfrac{68}{2} \right)\cos \left( \dfrac{90}{2} \right)}{\sin \left( \dfrac{90}{2} \right)\cos \left( \dfrac{68}{2} \right)}
LHS=sin34cos45sin45cos34LHS=\dfrac{\sin {{34}^{\circ }}\cos {{45}^{\circ }}}{\sin {{45}^{\circ }}\cos {{34}^{\circ }}}
Now, we can put values of sin45\sin {{45}^{\circ }} and cos45\cos {{45}^{\circ }} as 12.\dfrac{1}{\sqrt{2}}. Hence we get
LHS=sin34(12)(12)cos34=sin34cos34LHS=\dfrac{\sin {{34}^{\circ }}\left( \dfrac{1}{\sqrt{2}} \right)}{\left( \dfrac{1}{\sqrt{2}} \right)\cos {{34}^{\circ }}}=\dfrac{\sin {{34}^{\circ }}}{\cos {{34}^{\circ }}}
Now, we know that sinθcosθ=tanθ.\dfrac{\sin \theta }{\cos \theta }=\tan \theta . Hence we get LHS as
LHS=tan34................(vi)LHS=\tan {{34}^{\circ }}................\left( vi \right)
Now, we can convert the tan'\tan 'expression of LHS to cosine by using the identity
tan(90θ)=cotθ.............(vii)\tan \left( 90-\theta \right)=\cot \theta .............\left( vii \right)
Hence, we can write the LHS from equation (vii), we get
LHS=tan34=tan(9056)LHS=\tan {{34}^{\circ }}=\tan \left( 90-56 \right)
LHS=cot56..............(viii)LHS=\cot {{56}^{\circ }}..............\left( viii \right)
Hence, from the equation (i) and (viii) we get,
LHS=RHS=cot56LHS=RHS=\cot {{56}^{\circ }}
So, the given expression is proved.

Note: One can convert sin11\sin {{11}^{\circ }} to cosine function as well by using the relation sin(90θ)=cosθ.\sin \left( 90-\theta \right)=\cos \theta . And hence apply formula of cosAcosB\cos A-\cos B and cosA+cosB\cos A+\cos B to get the answer.
We can divide the whole expression by cos11\cos {{11}^{\circ }} i.e. numerator and denominator both. Hence we get
1tan111+tan11=tan45tan111+tan45tan11=tan(4511)=tan34=cot56=RHS.\dfrac{1-\tan {{11}^{\circ }}}{1+\tan {{11}^{\circ }}}=\dfrac{\tan {{45}^{\circ }}-\tan {{11}^{\circ }}}{1+\tan {{45}^{\circ }}\tan {{11}^{\circ }}}=\tan \left( 45-11 \right)=\tan {{34}^{\circ }}=\cot {{56}^{\circ }}=RHS.
Always remember the identities of trigonometric we need to use them according to the question for the flexibility of solution. Don’t get confused with the formula of sinAsinB\sin A-\sin B and sinA+sinB\sin A+\sin B in the solution.