Solveeit Logo

Question

Question: Prove the trigonometric expression \(\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi ...

Prove the trigonometric expression sin(xπ6)+cos(xπ3)=3sinx\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x

Explanation

Solution

Hint:Here we need to apply expansion formulas of sine and cosine in L.H.S i.e sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B and cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B in equation sin(xπ6)+cos(xπ3)\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right) to get required R.HS.

Complete step-by-step answer:

Consider trigonometric expression sin(xπ6)+cos(xπ3)=3sinx...(i)\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x...(i)
For proving the expressions start first by considering the left or right hand side of expressions. Here we choose left hand side of the expression (i)(i)
So we consider sin(xπ6)+cos(xπ3)...(ii)\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)...(ii)
Now using formula sin(AB)=sinAcosBcosAsinB\sin \left( A-B \right)=\sin A\cos B-\cos A\sin B we expand the first term sin(xπ6)\sin \left( x-\dfrac{\pi }{6} \right) along with substitutions A=xA=x and B=π6B=\dfrac{\pi }{6}
This implies that sin(xπ6)=sinxcosπ6cosxsinπ6...(iii)\sin \left( x-\dfrac{\pi }{6} \right)=\sin x\cos \dfrac{\pi }{6}-\cos x\sin \dfrac{\pi }{6}...(iii)
Now by using the values of cosπ6=32\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2} and sinπ6=12\sin \dfrac{\pi }{6}=\dfrac{1}{2} and substituting these values in equation (iii)(iii) we get sinxcosπ6cosxsinπ6=sinx(32)cosx(12)\sin x\cos \dfrac{\pi }{6}-\cos x\sin \dfrac{\pi }{6}=\sin x\left( \dfrac{\sqrt{3}}{2} \right)-\cos x\left( \dfrac{1}{2} \right)
Similarly we apply the formula cos(AB)=cosAcosB+sinAsinB\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B in the second term of the left hand side of the expression cos(xπ3)\cos \left( x-\dfrac{\pi }{3} \right)
Simultaneously doing substitution as A=xA=x and B=π3B=\dfrac{\pi }{3} in the expression. This implies cos(xπ3)=cosxcos(π3)+sinxsin(π3)...(iv)\cos \left( x-\dfrac{\pi }{3} \right)=\cos x\cos \left( \dfrac{\pi }{3} \right)+\sin x\sin \left( \dfrac{\pi }{3} \right)...(iv)
Now using trigonometric values of cos(π3)=12\cos \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2} and sin(π3)=32\sin \left( \dfrac{\pi }{3} \right)=\dfrac{\sqrt{3}}{2} in (iv)(iv)
By substituting these values in (iv)(iv) we have cosxcos(π3)+sinxsin(π3)=12cosx+32sinx\cos x\cos \left( \dfrac{\pi }{3} \right)+\sin x\sin \left( \dfrac{\pi }{3} \right)=\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x
Now consider the simplifications of the terms. This implies sin(xπ6)=(32)sinx(12)cosx\sin \left( x-\dfrac{\pi }{6} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\sin x-\left( \dfrac{1}{2} \right)\cos x and cos(xπ3)=12cosx+32sinx\cos \left( x-\dfrac{\pi }{3} \right)=\dfrac{1}{2}\cos x+\dfrac{\sqrt{3}}{2}\sin x
Thus after substituting these values in equation(ii)(ii) the equation results into simpler term such as,
sin(xπ6)+cos(xπ3)=(32)sinx(12)cosx+(12)cosx+32sinx sin(xπ6)+cos(xπ3)=(32+32)sinx sin(xπ6)+cos(xπ3)=(232)sinx \begin{aligned} & \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{\sqrt{3}}{2} \right)\sin x-\left( \dfrac{1}{2} \right)\cos x+\left( \dfrac{1}{2} \right)\cos x+\dfrac{\sqrt{3}}{2}\sin x \\\ & \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{3}}{2} \right)\sin x \\\ & \sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\left( \dfrac{2\sqrt{3}}{2} \right)\sin x \\\ \end{aligned}
By cancelling 2 from numerator and denominator we have sin(xπ6)+cos(xπ3)=3sinx\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x
Clearly 3Sinx\sqrt{3}\operatorname{Sin}x is equal to the right side of expression (i)(i) , so the result is proved.
Hence sin(xπ6)+cos(xπ3)=3sinx\sin \left( x-\dfrac{\pi }{6} \right)+\cos \left( x-\dfrac{\pi }{3} \right)=\sqrt{3}\sin x is proved.

Note: Notice the sign is negative or positive in between the angles. Accordingly, write formulas. Also, values of the trigonometric table are important here. After using correct formulas along with right trigonometric values will easily result in the right hand side. Take care while substituting trigonometric values. If a trigonometric value is substituted then it should come before a variable. For example write 3sinx\sqrt{3}\sin x instead of sinx(3)\sin x\left( \sqrt{3} \right) otherwise, root 3 gets multiplied to angle x by mistake.