Solveeit Logo

Question

Question: Prove the trigonometric expression \(\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\...

Prove the trigonometric expression tan3θ1+tan2θ+cot3θ1+cot2θ=secθcosecθ2sinθcosθ\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta

Explanation

Solution

To solve this question, you must know the following conversions:
cotθ=1tanθ tanθ=sinθcosθ secθ=1cosθ cosecθ=1sinθ \begin{aligned} & \cot \theta =\dfrac{1}{\tan \theta } \\\ & \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\\ & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \text{cosec}\theta =\dfrac{1}{\sin \theta } \\\ \end{aligned}
There are also a few identities to keep in mind:
sin2θ+cos2θ=1 tan2θ+1=sec2θ cot2θ+1=cosec2θ \begin{aligned} & {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\\ & {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\\ & {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\\ \end{aligned}
Here, we will first simplify the left side of the equation (L.H.S) and equate it to the right side of the equation (R.H.S). This would prove our result.

Complete step-by-step solution:
Let us start with the L.H.S as
tan3θ1+tan2θ+cot3θ1+cot2θ  \begin{aligned} & \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta } \\\ & \\\ \end{aligned}
Using cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }, we get
tan3θ1+tan2θ+1tan3θ1+1tan2θ =tan3θ1+tan2θ+tan2θtan3θ(1+tan2θ) =tan3θ1+tan2θ+1tanθ(1+tan2θ) \begin{aligned} & \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{\dfrac{1}{{{\tan }^{3}}\theta }}{1+\dfrac{1}{{{\tan }^{2}}\theta }} \\\ & =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\tan }^{2}}\theta }{{{\tan }^{3}}\theta \left( 1+{{\tan }^{2}}\theta \right)} \\\ & =\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)} \\\ \end{aligned}
Taking L.C.M of denominator, we get
tan4θ+1tanθ(1+tan2θ)\dfrac{{{\tan }^{4}}\theta +1}{\tan \theta \left( 1+{{\tan }^{2}}\theta \right)}
Replacing tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta },
sin4θcos4θ+1sinθcosθ(1+sin2θcos2θ) =sin4θ+cos4θsinθcos4θ(sin2θ+cos2θ)cos3θ \begin{aligned} & \dfrac{\dfrac{{{\sin }^{4}}\theta }{{{\cos }^{4}}\theta }+1}{\dfrac{\sin \theta }{\cos \theta }\left( 1+\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta } \right)} \\\ & =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\dfrac{\sin \theta {{\cos }^{4}}\theta \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}{{{\cos }^{3}}\theta }} \\\ \end{aligned}
Using the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1,
=sin4θ+cos4θsinθcosθ=\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta }{\sin \theta \cos \theta }
Now, adding and subtracting 2sin2θcos2θ2{{\sin }^{2}}\theta {{\cos }^{2}}\theta from the numerator,
=sin4θ+cos4θ+2sin2θcos2θ2sin2θcos2θsinθcosθ =(sin2θ)2+(cos2θ)2+2sin2θcos2θ2sin2θcos2θsinθcosθ \begin{aligned} & =\dfrac{{{\sin }^{4}}\theta +{{\cos }^{4}}\theta +2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\\ & =\dfrac{{{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}+2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\\ \end{aligned}
Using the identity (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab , we get
=(sin2θ+cos2θ)22sin2θcos2θsinθcosθ=\dfrac{{{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta }
As we know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1,
=12sin2θcos2θsinθcosθ =1sinθcosθ2sinθcosθ  \begin{aligned} & =\dfrac{1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{\sin \theta \cos \theta } \\\ & =\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta \\\ & \\\ \end{aligned}
As we know that,
secθ=1cosθ cosecθ=1sinθ \begin{aligned} & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \text{cosec}\theta =\dfrac{1}{\sin \theta } \\\ \end{aligned}
Hence, we get
=secθcosecθ2sinθcosθ=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta
Comparing L.H.S with R.H.S, we get
L.H.S=R.H.SL.H.S=R.H.S
Hence, we have proved the above result.

Note: Here is an alternative and much shorter way to prove the above expression:
L.H.S
tan3θ1+tan2θ+cot3θ1+cot2θ \dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\cot }^{3}}\theta }{1+{{\cot }^{2}}\theta }\text{ }
Using the identities
tan2θ+1=sec2θ cot2θ+1=cosec2θ \begin{aligned} & {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta \\\ & {{\cot }^{2}}\theta +1=\text{cosec}^{2}\theta \\\ \end{aligned}
We get,
=tanθ(sec2θ1)sec2θ+cotθ(cosec2θ1)cosec2θ =\dfrac{\tan \theta \left( {{\sec }^{2}}\theta -1 \right)}{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta -1 \right)}{\text{cosec}^{2}\theta }\text{ }
On breaking the numerator further to separate different terms, we can write it as
=tanθ(sec2θ)sec2θtanθsec2θ+cotθ(cosec2θ)cosec2θcotθcosec2θ=\dfrac{\tan \theta \left( {{\sec }^{2}}\theta \right)}{{{\sec }^{2}}\theta }-\dfrac{\tan \theta }{{{\sec }^{2}}\theta }+\dfrac{\cot \theta \left( \text{cosec}^{2}\theta \right)}{\text{cosec}^{2}\theta }-\dfrac{\cot \theta }{\text{cosec}^{2}\theta }
Using the following conversions
cotθ=1tanθ tanθ=sinθcosθ secθ=1cosθ cosecθ=1sinθ \begin{aligned} & \cot \theta =\dfrac{1}{\tan \theta } \\\ & \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\\ & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \text{cosec}\theta =\dfrac{1}{\sin \theta } \\\ \end{aligned}
We get,
=tanθsinθcosθ+cotθsinθcosθ =\tan \theta -\sin \theta \cos \theta +\cot \theta -\sin \theta \cos \theta \text{ }
=sinθcosθ+cosθsinθ2sinθcosθ =sin2θ+cos2θcosθsinθ2sinθcosθ \begin{aligned} & =\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }-2\sin \theta \cos \theta \\\ & =\dfrac{{{\sin }^{2}}\theta +{{\cos }^{2}}\theta }{\cos \theta \sin \theta }-2\sin \theta \cos \theta \\\ \end{aligned}
Using the identity sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, we get
=1sinθcosθ2sinθcosθ=\dfrac{1}{\sin \theta \cos \theta }-2\sin \theta \cos \theta
Using,
secθ=1cosθ cosecθ=1sinθ \begin{aligned} & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \text{cosec}\theta =\dfrac{1}{\sin \theta } \\\ \end{aligned}
We get,
=secθcosecθ2sinθcosθ=\sec \theta \text{cosec}\theta -2\sin \theta \cos \theta
Since, L.H.S=R.H.SL.H.S=R.H.S, hence we have proved the above relation.
While solving questions related to verifying an equation, we can proceed by simplifying either of the sides of the equation and reducing it further to get it equal to the other side of the equation. Just remember the formulas, identities and trigonometric conversions and you will obtain the right answer. Take care of the signs and the expression and avoid any calculation errors.