Question
Question: Prove the trigonometric expression \(\dfrac{{{\tan }^{3}}\theta }{1+{{\tan }^{2}}\theta }+\dfrac{{{\...
Prove the trigonometric expression 1+tan2θtan3θ+1+cot2θcot3θ=secθcosecθ−2sinθcosθ
Solution
To solve this question, you must know the following conversions:
cotθ=tanθ1tanθ=cosθsinθsecθ=cosθ1cosecθ=sinθ1
There are also a few identities to keep in mind:
sin2θ+cos2θ=1tan2θ+1=sec2θcot2θ+1=cosec2θ
Here, we will first simplify the left side of the equation (L.H.S) and equate it to the right side of the equation (R.H.S). This would prove our result.
Complete step-by-step solution:
Let us start with the L.H.S as
1+tan2θtan3θ+1+cot2θcot3θ
Using cotθ=tanθ1, we get
1+tan2θtan3θ+1+tan2θ1tan3θ1=1+tan2θtan3θ+tan3θ(1+tan2θ)tan2θ=1+tan2θtan3θ+tanθ(1+tan2θ)1
Taking L.C.M of denominator, we get
tanθ(1+tan2θ)tan4θ+1
Replacing tanθ=cosθsinθ,
cosθsinθ(1+cos2θsin2θ)cos4θsin4θ+1=cos3θsinθcos4θ(sin2θ+cos2θ)sin4θ+cos4θ
Using the identity sin2θ+cos2θ=1,
=sinθcosθsin4θ+cos4θ
Now, adding and subtracting 2sin2θcos2θ from the numerator,
=sinθcosθsin4θ+cos4θ+2sin2θcos2θ−2sin2θcos2θ=sinθcosθ(sin2θ)2+(cos2θ)2+2sin2θcos2θ−2sin2θcos2θ
Using the identity (a+b)2=a2+b2+2ab , we get
=sinθcosθ(sin2θ+cos2θ)2−2sin2θcos2θ
As we know that sin2θ+cos2θ=1,
=sinθcosθ1−2sin2θcos2θ=sinθcosθ1−2sinθcosθ
As we know that,
secθ=cosθ1cosecθ=sinθ1
Hence, we get
=secθcosecθ−2sinθcosθ
Comparing L.H.S with R.H.S, we get
L.H.S=R.H.S
Hence, we have proved the above result.
Note: Here is an alternative and much shorter way to prove the above expression:
L.H.S
1+tan2θtan3θ+1+cot2θcot3θ
Using the identities
tan2θ+1=sec2θcot2θ+1=cosec2θ
We get,
=sec2θtanθ(sec2θ−1)+cosec2θcotθ(cosec2θ−1)
On breaking the numerator further to separate different terms, we can write it as
=sec2θtanθ(sec2θ)−sec2θtanθ+cosec2θcotθ(cosec2θ)−cosec2θcotθ
Using the following conversions
cotθ=tanθ1tanθ=cosθsinθsecθ=cosθ1cosecθ=sinθ1
We get,
=tanθ−sinθcosθ+cotθ−sinθcosθ
=cosθsinθ+sinθcosθ−2sinθcosθ=cosθsinθsin2θ+cos2θ−2sinθcosθ
Using the identity sin2θ+cos2θ=1, we get
=sinθcosθ1−2sinθcosθ
Using,
secθ=cosθ1cosecθ=sinθ1
We get,
=secθcosecθ−2sinθcosθ
Since, L.H.S=R.H.S, hence we have proved the above relation.
While solving questions related to verifying an equation, we can proceed by simplifying either of the sides of the equation and reducing it further to get it equal to the other side of the equation. Just remember the formulas, identities and trigonometric conversions and you will obtain the right answer. Take care of the signs and the expression and avoid any calculation errors.