Solveeit Logo

Question

Question: Prove the result of the following expression, \(4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{...

Prove the result of the following expression, 4tan115tan11239=π44{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}=\dfrac{\pi }{4}.

Explanation

Solution

Hint:In order to prove the given equality, we should have some knowledge of a few inverse trigonometric formulas like, 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) and tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right). We also have to remember that tan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4}. We can prove the given equality by using these formulas.

Complete step-by-step answer:
In this question, we have been asked to prove the equality, 4tan115tan11239=π44{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}=\dfrac{\pi }{4}. To prove this equality, we will first consider the left hand side or the LHS of the equation. So, we can write it as,
LHS=4tan115tan11239LHS=4{{\tan }^{-1}}\dfrac{1}{5}-{{\tan }^{-1}}\dfrac{1}{239}
Which can also be written as,
LHS=2(2tan115)tan11239LHS=2\left( 2{{\tan }^{-1}}\dfrac{1}{5} \right)-{{\tan }^{-1}}\dfrac{1}{239}
Now, we know that 2tan1x2{{\tan }^{-1}}x can be expressed as tan1(2x1x2){{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right). So, by using this formula, we get the LHS as,
LHS=2[tan1(2(15)1(15)2)]tan11239LHS=2\left[ {{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right) \right]-{{\tan }^{-1}}\dfrac{1}{239}
Now, we know that, (15)2=125{{\left( \dfrac{1}{5} \right)}^{2}}=\dfrac{1}{25}. So, by applying it, we will simplify the LHS as follows,
LHS=2tan1(251125)tan11239 LHS=2tan1(2525125)tan11239 LHS=2tan1(2×2524×5)tan11239 \begin{aligned} & LHS=2{{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{1-\dfrac{1}{25}} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\\ & \Rightarrow LHS=2{{\tan }^{-1}}\left( \dfrac{\dfrac{2}{5}}{\dfrac{25-1}{25}} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\\ & \Rightarrow LHS=2{{\tan }^{-1}}\left( \dfrac{2\times 25}{24\times 5} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\\ \end{aligned}
We can further write it as,
LHS=2tan1(512)tan11239LHS=2{{\tan }^{-1}}\left( \dfrac{5}{12} \right)-{{\tan }^{-1}}\dfrac{1}{239}
Now, we will again use the formula, 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right), to simplify the above expression further. So, applying this, we can write the LHS as,
LHS=tan1(2(512)1(512)2)tan11239LHS={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{5}{12} \right)}{1-{{\left( \dfrac{5}{12} \right)}^{2}}} \right)-{{\tan }^{-1}}\dfrac{1}{239}
Now, we will simplify it further by writing, (512)2=25144{{\left( \dfrac{5}{12} \right)}^{2}}=\dfrac{25}{144}. So, we get the LHS as,
LHS=tan1((56)1(25144))tan11239 LHS=tan1[5614425144]tan11239 LHS=tan1[5×1446×119]tan11239 \begin{aligned} & LHS={{\tan }^{-1}}\left( \dfrac{\left( \dfrac{5}{6} \right)}{1-\left( \dfrac{25}{144} \right)} \right)-{{\tan }^{-1}}\dfrac{1}{239} \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{5}{6}}{\dfrac{144-25}{144}} \right]-{{\tan }^{-1}}\dfrac{1}{239} \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{5\times 144}{6\times 119} \right]-{{\tan }^{-1}}\dfrac{1}{239} \\\ \end{aligned}
And we can further write it as,
LHS=tan1[120119]tan11239LHS={{\tan }^{-1}}\left[ \dfrac{120}{119} \right]-{{\tan }^{-1}}\dfrac{1}{239}
Now, we know that tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right), so, we can apply this formula and write the above expression as,
LHS=tan1[12011912391+120119×1239]LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{120}{119}-\dfrac{1}{239}}{1+\dfrac{120}{119}\times \dfrac{1}{239}} \right]
Now, we will simplify it by taking the LCM of the numerator and the denominator. Hence, we can write the LHS as,
LHS=tan1[120×239119119×239119×239+120119×239] LHS=tan1[(120×239119)(119×239)(119×239+120)(119×239)] LHS=tan1[(120×239119)(119×239+120)] LHS=tan1[2856128561] \begin{aligned} & LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{120\times 239-119}{119\times 239}}{\dfrac{119\times 239+120}{119\times 239}} \right] \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( 120\times 239-119 \right)\left( 119\times 239 \right)}{\left( 119\times 239+120 \right)\left( 119\times 239 \right)} \right] \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( 120\times 239-119 \right)}{\left( 119\times 239+120 \right)} \right] \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{28561}{28561} \right] \\\ \end{aligned}
We know that the common terms of the numerator and the denominator gets cancelled, so we get the LHS as,
LHS=tan11LHS={{\tan }^{-1}}1
And from the trigonometric ratios, we know that tanπ4=1\tan \dfrac{\pi }{4}=1, which can be expressed as, π4=tan11\dfrac{\pi }{4}={{\tan }^{-1}}1. Hence, we can write, LHS=π4LHS=\dfrac{\pi }{4}, which is the same as the right hand side or the RHS of the expression given in the question, so LHS = RHS.
Hence, we have proved the expression given in the question.

Note: There is a possibility of making calculation mistakes while solving this question as it involves a lot of calculations. And we, know that we have to get tan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4} in the end, so we will come to know if we are on the right track in the solving of the question. Also, we should remember the formulas like, 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) and tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) to solve the question.