Solveeit Logo

Question

Question: Prove the result of the following expression, \(2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}...

Prove the result of the following expression, 2tan134tan11731=π42{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}.

Explanation

Solution

Hint:To prove the result of the given expression, we should know a few inverse trigonometric formulas like, 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) and tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right). We also have to remember that tanπ4=1\tan \dfrac{\pi }{4}=1. We can prove the given equality by using these formulas and should be very careful while doing the calculations.

Complete step-by-step answer:
In this question, we have been asked to prove the equality, 2tan134tan11731=π42{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}=\dfrac{\pi }{4}. So, to prove this equality, we will first consider the left hand side of the equation. So, we can write it as,
LHS=2tan134tan11731LHS=2{{\tan }^{-1}}\dfrac{3}{4}-{{\tan }^{-1}}\dfrac{17}{31}
Now, we know that 2tan1x2{{\tan }^{-1}}x can be expressed as tan1(2x1x2){{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right). Hence, applying it to the expression, we get the LHS as,
LHS=tan1[2(34)1(34)2]tan11731LHS={{\tan }^{-1}}\left[ \dfrac{2\left( \dfrac{3}{4} \right)}{1-{{\left( \dfrac{3}{4} \right)}^{2}}} \right]-{{\tan }^{-1}}\dfrac{17}{31}
Now, we will simplify it further and get the LHS as,
LHS=tan1[(32)1(916)]tan11731 LHS=tan1[(32)(169)16]tan11731 LHS=tan1[(32)(716)]tan11731 \begin{aligned} & LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{1-\left( \dfrac{9}{16} \right)} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{\dfrac{\left( 16-9 \right)}{16}} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{\left( \dfrac{3}{2} \right)}{\left( \dfrac{7}{16} \right)} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\\ \end{aligned}
And we can further simplify it as,
LHS=tan1[3×162×7]tan11731 LHS=tan1[247]tan11731 \begin{aligned} & LHS={{\tan }^{-1}}\left[ \dfrac{3\times 16}{2\times 7} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\\ & \Rightarrow LHS={{\tan }^{-1}}\left[ \dfrac{24}{7} \right]-{{\tan }^{-1}}\dfrac{17}{31} \\\ \end{aligned}
Now, we know that tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right), so for a=247a=\dfrac{24}{7} and b=1731b=\dfrac{17}{31}, we can apply this and write the above expression as,
LHS=tan1[24717311+247×1731]LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{24}{7}-\dfrac{17}{31}}{1+\dfrac{24}{7}\times \dfrac{17}{31}} \right]
Now, we will take the LCM of both the terms of the numerator and the denominator. So, we will get the LHS as follows,
LHS=tan1[24×3117×77×317×31+24×177×31]LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{24\times 31-17\times 7}{7\times 31}}{\dfrac{7\times 31+24\times 17}{7\times 31}} \right]
We can further write it as,
LHS=tan1[(24×3117×7)(7×31)(7×31+24×17)(7×31)] LHS=tan1(744119217+408) LHS=tan1(625625) \begin{aligned} & LHS={{\tan }^{-1}}\left[ \dfrac{\left( 24\times 31-17\times 7 \right)\left( 7\times 31 \right)}{\left( 7\times 31+24\times 17 \right)\left( 7\times 31 \right)} \right] \\\ & \Rightarrow LHS={{\tan }^{-1}}\left( \dfrac{744-119}{217+408} \right) \\\ & \Rightarrow LHS={{\tan }^{-1}}\left( \dfrac{625}{625} \right) \\\ \end{aligned}
And we know that the common terms of the numerator and the denominator gets cancelled, so we can write the above as,
LHS=tan11LHS={{\tan }^{-1}}1
Now, we know that tanπ4=1\tan \dfrac{\pi }{4}=1. So, we can write π4=tan11\dfrac{\pi }{4}={{\tan }^{-1}}1. So, applying that, we can write the LHS as, LHS=π4LHS=\dfrac{\pi }{4}, which implies that it is equal to the right hand side or the RHS, given in the question. So, LHS = RHS.
Hence, we have proved the given expression.

Note: While solving the question, there are high possibilities that we end up with LHSRHSLHS\ne RHS, which would mean that there is a calculation mistake somewhere and we need to check the calculations again. Also, we must remember that, 2tan1x=tan1(2x1x2)2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) and tan1atan1b=tan1(ab1+ab){{\tan }^{-1}}a-{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a-b}{1+ab} \right) to solve this question easily.