Solveeit Logo

Question

Question: Prove the result \(2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \rig...

Prove the result 2tan1(15)+tan1(18)=tan1(47)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right).

Explanation

Solution

Hint:We will apply the formula 2tan1(x)=tan1(2x1x2)2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) in order to solve the question. We will apply the trick of first considering the left hand side and then verify it to the right hand side of the expression. We will also use tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) to solve the question further.

Complete step-by-step answer:
We will start solving the question by taking the expression 2tan1(15)+tan1(18)=tan1(47)...(i)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right)...(i) into consideration. We will focus on the left hand side of the expression which is given by 2tan1(15)+tan1(18)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right). Now we will apply the formula of trigonometry. The formula is as 2tan1(x)=tan1(2x1x2)2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right). Therefore the left hand side of the expression changes into
2tan1(15)+tan1(18)=tan1(2(15)1(15)2)+tan1(18) 2tan1(15)+tan1(18)=tan1(21245)+tan1(18) 2tan1(15)+tan1(18)=tan1(21×524)+tan1(18) 2tan1(15)+tan1(18)=tan1(512)+tan1(18) \begin{aligned} & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{2\left( \dfrac{1}{5} \right)}{1-{{\left( \dfrac{1}{5} \right)}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{1}}{\dfrac{24}{5}} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{5}{24} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ \end{aligned}
Now we will apply the formula tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right). Therefore, we have
2tan1(15)+tan1(18)=tan1(512)+tan1(18) 2tan1(15)+tan1(18)=tan1(512+181(512)(18)) 2tan1(15)+tan1(18)=tan1(10+32496596) 2tan1(15)+tan1(18)=tan1(13249196) 2tan1(15)+tan1(18)=tan1(1324×9691) 2tan1(15)+tan1(18)=tan1(47) \begin{aligned} & 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{5}{12} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{5}{12}+\dfrac{1}{8}}{1-\left( \dfrac{5}{12} \right)\left( \dfrac{1}{8} \right)} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{10+3}{24}}{\dfrac{96-5}{96}} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{13}{24}}{\dfrac{91}{96}} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{13}{24}\times \dfrac{96}{91} \right) \\\ & \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right) \\\ \end{aligned}
And since it is equal to the right hand side of the expression (i). Therefore the two given sides are equal.
Hence, we have proved 2tan1(15)+tan1(18)=tan1(47)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{8} \right)={{\tan }^{-1}}\left( \dfrac{4}{7} \right).

Note: We can also split 2tan1(15)2{{\tan }^{-1}}\left( \dfrac{1}{5} \right) into tan1(15)+tan1(15){{\tan }^{-1}}\left( \dfrac{1}{5} \right)+{{\tan }^{-1}}\left( \dfrac{1}{5} \right) instead of using the formula 2tan1(x)=tan1(2x1x2)2{{\tan }^{-1}}\left( x \right)={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right) and applying the formula tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right) to it. This may ease in solving the question. Be aware of doing calculation mistakes otherwise the answer will be wrong and the verification will fail. While solving tan1(21245){{\tan }^{-1}}\left( \dfrac{\dfrac{2}{1}}{\dfrac{24}{5}} \right) write tan1(21×524){{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{5}{24} \right) instead of tan1(21×245){{\tan }^{-1}}\left( \dfrac{2}{1}\times \dfrac{24}{5} \right). This is due to the fact that abcd=ab×dc\dfrac{\dfrac{a}{b}}{\dfrac{c}{d}}=\dfrac{a}{b}\times \dfrac{d}{c}. That is why we have done calculation in this manner.