Solveeit Logo

Question

Question: Prove the identity \(\left( {\sec A - \sin A} \right)\left( {\cos {\text{ec}}A + \cos A} \right) = {...

Prove the identity (secAsinA)(cosecA+cosA)=sin2AtanA+cotA\left( {\sec A - \sin A} \right)\left( {\cos {\text{ec}}A + \cos A} \right) = {\sin ^2}A\tan A + \cot A

Explanation

Solution

We will prove the identity by simplifying the left-hand-side and right-hand-side of the given expression using the trigonometric formulas. Simplify the LHS by opening the brackets and using the identities like secA=1cosA\sec A = \dfrac{1}{{\cos A}} and cosecA=1sinA\operatorname{cosec} A = \dfrac{1}{{\sin A}} and convert the given expression in terms of sine and cosine. Similarly, use properties tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}} and cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}} to simplify RHS.

Complete step-by-step answer:
We have to prove the identity (secAsinA)(cosecA+cosA)=sin2AtanA+cotA\left( {\sec A - \sin A} \right)\left( {\cos {\text{ec}}A + \cos A} \right) = {\sin ^2}A\tan A + \cot A
We will begin by solving L.H.S
Multiply the brackets on L.H.S to simplify the expression.
secAcosecA+secAcosAsinAcosecAsinAcosA\sec A\operatorname{cosec} A + \sec A\cos A - \sin A\operatorname{cosec} A - \sin A\cos A
Now, we now that secA=1cosA\sec A = \dfrac{1}{{\cos A}} and cosecA=1sinA\operatorname{cosec} A = \dfrac{1}{{\sin A}}
Therefore, we have,
1cosA(1sinA)+(1cosA)cosAsinA(1sinA)sinAcosA 1cosA(1sinA)+11sinAcosA 1cosA(1sinA)sinAcosA  \dfrac{1}{{\cos A}}\left( {\dfrac{1}{{\sin A}}} \right) + \left( {\dfrac{1}{{\cos A}}} \right)\cos A - \sin A\left( {\dfrac{1}{{\sin A}}} \right) - \sin A\cos A \\\ \Rightarrow \dfrac{1}{{\cos A}}\left( {\dfrac{1}{{\sin A}}} \right) + 1 - 1 - \sin A\cos A \\\ \Rightarrow \dfrac{1}{{\cos A}}\left( {\dfrac{1}{{\sin A}}} \right) - \sin A\cos A \\\
On simplifying the above expression, we will get,
1sin2Acos2AcosAsinA\dfrac{{1 - {{\sin }^2}A{{\cos }^2}A}}{{\cos A\sin A}}
But, we know that sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
Then,
sin2A+cos2Asin2Acos2AcosAsinA\dfrac{{{{\sin }^2}A + {{\cos }^2}A - {{\sin }^2}A{{\cos }^2}A}}{{\cos A\sin A}}
We will take sin2A{\sin ^2}A common from the numerator and simplify it further,
cos2A+sin2A(1cos2A)cosAsinA\dfrac{{{{\cos }^2}A + {{\sin }^2}A\left( {1 - {{\cos }^2}A} \right)}}{{\cos A\sin A}}
Also, 1cos2A=sin2A1 - {\cos ^2}A = {\sin ^2}A
cos2A+sin2A(sin2A)cosAsinA cos2A+sin4AcosAsinA  \dfrac{{{{\cos }^2}A + {{\sin }^2}A\left( {{{\sin }^2}A} \right)}}{{\cos A\sin A}} \\\ \Rightarrow \dfrac{{{{\cos }^2}A + {{\sin }^4}A}}{{\cos A\sin A}} \\\
Now, we will simplify R.H.S of the given expression,
sin2AtanA+cotA{\sin ^2}A\tan A + \cot A
We know that tanA=sinAcosA\tan A = \dfrac{{\sin A}}{{\cos A}} and cotA=cosAsinA\cot A = \dfrac{{\cos A}}{{\sin A}}
Therefore, the expression in the R.H.S can be written as,
sin2A(sinAcosA)+cosAsinA sin3AcosA+cosAsinA  {\sin ^2}A\left( {\dfrac{{\sin A}}{{\cos A}}} \right) + \dfrac{{\cos A}}{{\sin A}} \\\ \Rightarrow \dfrac{{{{\sin }^3}A}}{{\cos A}} + \dfrac{{\cos A}}{{\sin A}} \\\
Now, we will take the L.C.M
sin4A+cos2AcosAsinA\dfrac{{{{\sin }^4}A + {{\cos }^2}A}}{{\cos A\sin A}}
Which is equal to LHS.
Since, LHS is equal to RHS, the given identity is proved.

Note: Students must remember the trigonometric identities to do these types of questions. Simplification plays an important role in these questions. We can also start from LHS and simplify it form an expression given in RHS.