Question
Question: Prove the identity \(\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right...
Prove the identity (cosecθ−sinθ)(secθ−cosθ)=tanθ+cotθ1.
Solution
Hint:In the given expression consider the LHS part and RHS part separately. Apply basic trigonometric formulas in cosecθ,secθ,tanθ and cotθ and simplify. Prove that LHS is equal to RHS.
Complete step-by-step answer:
We have been given a trigonometric expression. We need to solve the LHS part of the RHS part. Then prove that LHS is equal to RHS.
We have been given,
(cosecθ−sinθ)(secθ−cosθ)=tanθ+cotθ1.
Let us consider the LHS=(cosecθ−sinθ)(secθ−cosθ)→(1)
We know the basic trigonometric identity,
cosecθ=sinθ1 and secθ=cosθ1.
Now substitute these value in (1)
LHS=(cosecθ−sinθ)(secθ−cosθ)
=(sinθ1−sinθ)(cosθ1−cosθ) , let us simplify it
LHS=(sinθ1−sin2θ)(cosθ1−cos2θ)→(2)
We know that sin2θ+cos2θ=1
∴sin2θ=1−cos2θ and cos2θ=1−sin2θ.
Thus let us substitute the above expression in (2)
LHS=(sinθcos2θ)×(cosθsin2θ)=sinθcosθ .
Now let us consider the RHS=tanθ+cotθ1→(3)
We know that by basic trigonometric,
tanθ=cosθsinθ and cotθ=sinθcosθ .
Now substitute there values in (3) and simplify if,
RHS=tanθ+cotθ1 .
=cosθsinθ+sinθcosθ1 , simplify the expression.
=sinθcosθsin2θ+cos2θ1=sin2θ+cos2θsinθcosθ.
We know that sin2θ+cos2θ=1 .
⇒RHS=1sinθcosθ=sinθcosθ.
Thus we got LHS=sinθcosθ and RHS=sinθcosθ.
∴LHS=RHS .
∴ We proved that (cosecθ−sinθ)(secθ−cosθ)=tanθ+cotθ1.
Thus proved.
Note: You can also solve the RHS part by, cotθ=tanθ1 .
tanθ+tanθ11=tanθtan2θ+11=tan2θ+1tanθ=cos2θsin2θ+cos2θcosθsinθ .
=cosθsinθ×cos2θ=sinθcosθ.Students should remember the important trigonometric identities and formulas for solving these types of questions.