Solveeit Logo

Question

Question: Prove the identity \(\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right...

Prove the identity (cosecθsinθ)(secθcosθ)=1tanθ+cotθ.\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)=\dfrac{\text{1}}{\text{tan}\theta \text{+cot}\theta }.

Explanation

Solution

Hint:In the given expression consider the LHS part and RHS part separately. Apply basic trigonometric formulas in cosecθ,secθ,tanθ\cos ec\theta ,\sec \theta ,\tan \theta and cotθ\cot \theta and simplify. Prove that LHS is equal to RHS.

Complete step-by-step answer:
We have been given a trigonometric expression. We need to solve the LHS part of the RHS part. Then prove that LHS is equal to RHS.
We have been given,
(cosecθsinθ)(secθcosθ)=1tanθ+cotθ.\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)=\dfrac{\text{1}}{\text{tan}\theta \text{+cot}\theta }.
Let us consider the LHS=(cosecθsinθ)(secθcosθ)(1)LHS=\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)\to (1)
We know the basic trigonometric identity,
cosecθ=1sinθ\cos ec\theta =\dfrac{\text{1}}{\text{sin}\theta } and secθ=1cosθ.\sec \theta =\dfrac{\text{1}}{\text{cos}\theta }.
Now substitute these value in (1)
LHS=(cosecθsinθ)(secθcosθ)LHS=\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)
=(1sinθsinθ)(1cosθcosθ)=\left( \dfrac{1}{\sin \theta }-\sin \theta \right)\left( \dfrac{1}{\cos \theta }-\cos \theta \right) , let us simplify it
LHS=(1sin2θsinθ)(1cos2θcosθ)(2)LHS=\left( \dfrac{1-{{\sin }^{2}}\theta }{\sin \theta } \right)\left( \dfrac{1-{{\cos }^{2}}\theta }{\cos \theta } \right)\to (2)
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
sin2θ=1cos2θ\therefore {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta and cos2θ=1sin2θ.{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta .
Thus let us substitute the above expression in (2)
LHS=(cos2θsinθ)×(sin2θcosθ)=sinθcosθLHS=\left( \dfrac{{{\cos }^{2}}\theta }{\sin \theta } \right)\times \left( \dfrac{{{\sin }^{2}}\theta }{\cos \theta } \right)=\sin \theta \cos \theta .
Now let us consider the RHS=1tanθ+cotθ(3)RHS=\dfrac{\text{1}}{\tan \theta +\cot \theta }\to (3)
We know that by basic trigonometric,
tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } .
Now substitute there values in (3) and simplify if,
RHS=1tanθ+cotθRHS=\dfrac{1}{\text{tan}\theta \text{+cot}\theta } .
=1sinθcosθ+cosθsinθ=\dfrac{\text{1}}{\dfrac{\sin \theta }{\cos \theta }+\dfrac{\cos \theta }{\sin \theta }} , simplify the expression.
=1sin2θ+cos2θsinθcosθ=sinθcosθsin2θ+cos2θ.=\dfrac{\text{1}}{\dfrac{\text{si}{{\text{n}}^{2}}\theta +{{\cos }^{2}}\theta }{\text{sin}\theta \text{cos}\theta }}=\dfrac{\text{sin}\theta \text{cos}\theta }{\text{si}{{\text{n}}^{2}}\theta +{{\cos }^{2}}\theta }.
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 .
RHS=sinθcosθ1=sinθcosθ.\Rightarrow RHS=\dfrac{\text{sin}\theta \text{cos}\theta }{\text{1}}=\sin \theta \cos \theta .
Thus we got LHS=sinθcosθLHS=\sin \theta \cos \theta and RHS=sinθcosθ.RHS=\sin \theta \cos \theta .
LHS=RHS\therefore LHS=RHS .
\therefore We proved that (cosecθsinθ)(secθcosθ)=1tanθ+cotθ.\left( \cos ec\theta -\sin \theta \right)\left( \sec \theta -\cos \theta \right)=\dfrac{\text{1}}{\text{tan}\theta \text{+cot}\theta }.
Thus proved.

Note: You can also solve the RHS part by, cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta } .
1tanθ+1tanθ=1tan2θ+1tanθ=tanθtan2θ+1=sinθcosθsin2θ+cos2θcos2θ\dfrac{\text{1}}{\text{tan}\theta \text{+}\dfrac{1}{\tan \theta }}=\dfrac{\text{1}}{\dfrac{\text{ta}{{\text{n}}^{2}}\theta +1}{\text{tan}\theta }}=\dfrac{\text{tan}\theta }{\text{ta}{{\text{n}}^{2}}\theta +1}=\dfrac{\dfrac{\text{sin}\theta }{\text{cos}\theta }}{\dfrac{\text{si}{{\text{n}}^{2}}\theta +{{\cos }^{2}}\theta }{\text{co}{{\text{s}}^{2}}\theta }} .
=sinθcosθ×cos2θ=sinθcosθ.=\dfrac{\sin \theta }{\cos \theta }\times {{\cos }^{2}}\theta =\sin \theta \cos \theta.Students should remember the important trigonometric identities and formulas for solving these types of questions.