Solveeit Logo

Question

Question: Prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\cs...

Prove the identity (1+cotA+tanA)(sinAcosA)=secAcsc2AcscAsec2A\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A} .

Explanation

Solution

To the identity (1+cotA+tanA)(sinAcosA)=secAcsc2AcscAsec2A\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A} , we have to consider the LHS. We have to first multiply the terms. Then, we have to apply cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A} and tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} . We have to simplify the terms and apply cscA=1sinA\csc A=\dfrac{1}{\sin A} and secA=1cosA\sec A=\dfrac{1}{\cos A} . After a few rearrangements, the LHS will be equal to the RHS.

Complete step by step solution:
We have to prove the identity (1+cotA+tanA)(sinAcosA)=secAcsc2AcscAsec2A\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\csc }^{2}}A}-\dfrac{\csc A}{{{\sec }^{2}}A} . Let us consider the LHS.
LHS=(1+cotA+tanA)(sinAcosA)\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)
Let us multiply the terms.
LHS=sinAcosA+cotAsinAcotAcosA+tanAsinAtanAcosA\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A
We know that cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A} and tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} . Hence, the above equation becomes
LHS=sinAcosA+cosAsinA×sinAcosAsinA×cosA+sinAcosA×sinAsinAcosA×cosA\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\dfrac{\cos A}{\sin A}\times \cos A+\dfrac{\sin A}{\cos A}\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A
Let us cancel the common terms from the numerator and denominator and simplify.
LHS=sinAcosA+cosAcos2AsinA+sin2AcosAsinA\Rightarrow LHS=\sin A-\cos A+\cos A-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}-\sin A
We can further cancel the common terms.
LHS=cos2AsinA+sin2AcosA\Rightarrow LHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A}
We know that cscA=1sinA\csc A=\dfrac{1}{\sin A} and secA=1cosA\sec A=\dfrac{1}{\cos A} . Hence, we can write the above form as

& \Rightarrow LHS=\left( -\dfrac{1}{\dfrac{1}{{{\cos }^{2}}A}}\times \dfrac{1}{\sin A} \right)+\left( \dfrac{1}{\dfrac{1}{{{\sin }^{2}}A}}\times \dfrac{1}{\cos A} \right) \\\ & \Rightarrow LHS=-\dfrac{1}{{{\sec }^{2}}A}\times \csc A+\dfrac{1}{\csc {{\,}^{2}}A}\times \sec A \\\ & \Rightarrow LHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}=RHS \\\ \end{aligned}$$ Therefore, LHS = RHS. Hence proved. **Note:** Students must know the functions thoroughly and how to apply them. They must know that $\csc A=\dfrac{1}{\sin A}$ , $\sec A=\dfrac{1}{\cos A}$ , $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . They must begin the proof always from the LHS. We can prove the given identity in an alternate method. Let us consider the LHS. $$\Rightarrow LHS=\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)$$ Let us multiply the terms. $$\Rightarrow LHS=\sin A-\cos A+\cot A\sin A-\cot A\cos A+\tan A\sin A-\tan A\cos A$$ We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes $$\Rightarrow LHS=\sin A-\cos A+\dfrac{\cos A}{\sin A}\times \sin A-\cot A\times \cos A+\tan A\times \sin A-\dfrac{\sin A}{\cos A}\times \cos A$$ Let us cancel the common terms from the numerator and denominator and simplify. $$\begin{aligned} & \Rightarrow LHS=\sin A-\cos A+\cos A-\cot A\times \cos A+\tan A\times \sin A-\sin A \\\ & \Rightarrow LHS=-\cot A\cos A+\tan A\sin A...\left( i \right) \\\ \end{aligned}$$ Now, let us consider the RHS. $$\Rightarrow RHS=-\dfrac{\csc A}{{{\sec }^{2}}A}+\dfrac{\sec A}{\csc {{\,}^{2}}A}$$ We know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\dfrac{1}{\cos A}$ . Hence, we can write the above form as $$\begin{aligned} & \Rightarrow RHS=-\dfrac{\dfrac{1}{\sin A}}{\dfrac{1}{{{\cos }^{2}}A}}+\dfrac{\dfrac{1}{\cos A}}{\dfrac{1}{{{\sin }^{2}}A}} \\\ & \Rightarrow RHS=-\dfrac{{{\cos }^{2}}A}{\sin A}+\dfrac{{{\sin }^{2}}A}{\cos A} \\\ \end{aligned}$$ Let us take the LCM. $$\Rightarrow RHS=-\dfrac{{{\cos }^{3}}A}{\sin A\cos A}+\dfrac{{{\sin }^{3}}A}{\sin A\cos A}$$ Let us take cos A outside from the first term and sin A from the second term. $$\Rightarrow RHS=-\cos A\times \dfrac{{{\cos }^{2}}A}{\sin A\cos A}+\sin A\times \dfrac{{{\sin }^{2}}A}{\sin A\cos A}$$ Let us cancel the common terms. $$\Rightarrow RHS=-\cos A\times \dfrac{\cos A}{\sin A}+\sin A\times \dfrac{\sin A}{\cos A}$$ We know that $\cot A=\dfrac{\cos A}{\sin A}$ and $\tan A=\dfrac{\sin A}{\cos A}$ . Hence, the above equation becomes $$\Rightarrow RHS=-\cos A\cot A+\sin A\tan A...\left( ii \right)$$ From (i) and (ii), we can see that LHS = RHS. Hence proved.