Question
Question: Prove the identity \[\left( 1+\cot A+\tan A \right)\left( \sin A-\cos A \right)=\dfrac{\sec A}{{{\cs...
Prove the identity (1+cotA+tanA)(sinA−cosA)=csc2AsecA−sec2AcscA .
Solution
To the identity (1+cotA+tanA)(sinA−cosA)=csc2AsecA−sec2AcscA , we have to consider the LHS. We have to first multiply the terms. Then, we have to apply cotA=sinAcosA and tanA=cosAsinA . We have to simplify the terms and apply cscA=sinA1 and secA=cosA1 . After a few rearrangements, the LHS will be equal to the RHS.
Complete step by step solution:
We have to prove the identity (1+cotA+tanA)(sinA−cosA)=csc2AsecA−sec2AcscA . Let us consider the LHS.
⇒LHS=(1+cotA+tanA)(sinA−cosA)
Let us multiply the terms.
⇒LHS=sinA−cosA+cotAsinA−cotAcosA+tanAsinA−tanAcosA
We know that cotA=sinAcosA and tanA=cosAsinA . Hence, the above equation becomes
⇒LHS=sinA−cosA+sinAcosA×sinA−sinAcosA×cosA+cosAsinA×sinA−cosAsinA×cosA
Let us cancel the common terms from the numerator and denominator and simplify.
⇒LHS=sinA−cosA+cosA−sinAcos2A+cosAsin2A−sinA
We can further cancel the common terms.
⇒LHS=−sinAcos2A+cosAsin2A
We know that cscA=sinA1 and secA=cosA1 . Hence, we can write the above form as