Solveeit Logo

Question

Question: Prove the identity, \(\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^...

Prove the identity, cos9+sin9cos9sin9=cot36\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}

Explanation

Solution

Hint: Divide numerator and denominator by cos9\cos {{9}^{\circ }} or sin9\sin {{9}^{\circ }} to get a trigonometric identity.

Complete step-by-step answer:
Use relation cot(90θ)=tanθ\cot \left( 90-\theta \right)=\tan \theta or tan(90θ)=cotθ\tan \left( 90-\theta \right)=\cot \theta for simplifying it further.

We have to prove that,
cos9+sin9cos9sin9=cot36..........(i)\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}=\cot {{36}^{\circ }}..........\left( i \right)
Let us prove the given relation by simplifying LHS of equation (i) we have,
LHS=cos9+sin9cos9sin9=\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}
Dividing numerator and denominator by cos9\cos {{9}^{\circ }}, we get,
LHS = cos9+sin9cos9cos9sin9cos9\dfrac{\dfrac{\cos {{9}^{\circ }}+\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}-\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}
Now, we can divide cos9\cos {{9}^{\circ }} by cos9\cos {{9}^{\circ }} and sin9\sin {{9}^{\circ }} by cos9\cos {{9}^{\circ }} in numerator and similarly, cos9\cos {{9}^{\circ }} by cos9\cos {{9}^{\circ }} and sin9\sin {{9}^{\circ }} by cos9\cos {{9}^{\circ }} in denominator as well. We get,
LHS = cos9cos9+sin9cos9cos9cos9sin9cos9............(ii)\dfrac{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}+\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}{\dfrac{\cos {{9}^{\circ }}}{\cos {{9}^{\circ }}}-\dfrac{\sin {{9}^{\circ }}}{\cos {{9}^{\circ }}}}............(ii)
We have trigonometric identity,
tanθ=sinθcosθ...........(iii)\tan \theta =\dfrac{\sin \theta }{\cos \theta }...........(iii)
Hence, equation (ii) can be simplified as
LHS = 1+tan91tan9=1+tan91tan9(1)\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}}=\dfrac{1+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\left( 1 \right)}
As we know, tan45=1\tan {{45}^{\circ }}=1 , so above equation can be written as
LHS = tan45+tan91tan9tan45.............(iv)\dfrac{\tan {{45}^{\circ }}+\tan {{9}^{\circ }}}{1-\tan {{9}^{\circ }}\tan {{45}^{\circ }}}.............\left( iv \right)
Now, using trigonometric identity,
tan(A+B)=tanA+tanB1tanA+tanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A+\tan B}
Hence equation (iv) can be rewritten with the help of the above equation. So, we get
LHS = tan(45+9)=tan54\tan \left( 45+9 \right)=\tan {{54}^{\circ }}
Now, we can use relation tan(90θ)=cotθ\tan \left( {{90}^{\circ }}-\theta \right)=\cot \theta to convert the ‘tan’ function to ‘cot’.
Hence, LHS can be given as
LHS = tan(9036)=cot36\tan \left( 90-36 \right)=\cot {{36}^{\circ }}
Therefore, LHS = RHS = cot36\cot {{36}^{\circ }}
Hence proved the given relation

Note: Another approach for the given question would be to use trigonometric identities
cosC+cosD=2cosC+D2cosCD2\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}
cosCcosD=2sinC+D2sinCD2\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}
Use relation cosθ=sin(90θ)\cos \theta =\sin \left( 90-\theta \right)
So, LHS = cos9+cos81cos9cos81\dfrac{\cos {{9}^{\circ }}+\cos {{81}^{\circ }}}{\cos 9-\cos 81}
One can go wrong while converting tan45+tan91tan9tan45\dfrac{\tan 45+\tan {{9}^{\circ }}}{1-\tan 9\tan 45} to tan54\tan {{54}^{\circ }} .
He or she may confuse between formula tan(A-B) and tan(A+B).