Solveeit Logo

Question

Question: Prove the given trigonometric identity. The identity is:\[sin\text{ }{{35}^{\circ }}\text{ }\times s...

Prove the given trigonometric identity. The identity is:sin 35 ×sin 55  cos 35 × cos 55 = 0sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0

Explanation

Solution

Hint: Apply the trigonometric identity cos(s+t)=cos(s)cos(t)sin(s)sin(t)\cos \left( s+t \right)=\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right). The sign is reversed and then the given trigonometric expression in the LHS will fit almost in the above expansion form. Then from that we can prove that it is zero. Also, use cos 90=0cos\text{ 9}{{\text{0}}^{\circ }}=0 .

Complete step-by-step answer:
It is to prove that sin 35 ×sin 55 - cos 35 × cos 55 = 0sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ - }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0. So here this expression in the left-hand side is similar to the identity cos(s)cos(t)sin(s)sin(t)\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right). Also, the expansion formula for the above is cos(s+t)=cos(s)cos(t)sin(s)sin(t)\cos \left( s+t \right)=\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right). Now here the expression in the left-hand side is sin 35 ×sin 55  cos 35 × cos 55 sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }. So, now reversing the sign, we have:
-( cos 35 × cos 55 sin 35 ×sin 55)\text{-( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }-sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}). Next comparing this expression with cos(s)cos(t)sin(s)sin(t)\cos \left( s \right)\cos \left( t \right)-\sin \left( s \right)\sin \left( t \right), we have following:
cos 35 × cos 55 - sin 35 ×sin 55)=cos(35+55)\Rightarrow -\text{( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ - }sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }})=-cos({{35}^{\circ }}+{{55}^{\circ }})
This is because s=35andt=55s={{35}^{\circ }}\,\text{and}\,t={{55}^{\circ }} .
So we will simplify the LHS of the given identity sin 35 ×sin 55  cos 35 × cos 55 = 0sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0, as follows:

& \Rightarrow LHS=-\text{( }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ - }sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}) \\\ & \Rightarrow LHS=-cos({{35}^{\circ }}+{{55}^{\circ }}) \\\ & \Rightarrow LHS=-cos({{90}^{\circ }}) \\\ & \Rightarrow LHS=0\,\,\,\,\,\,\,\,\,\because cos({{90}^{\circ }})=0 \\\ \end{aligned}$$ And this is same as the right-hand side (RHS) of the identity$$sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0$$ Hence, we have proven the given identity. Note: The alternate way to prove that $$sin\text{ }{{35}^{\circ }}\text{ }\times sin\text{ }{{55}^{\circ }}\text{ }-\text{ }cos\text{ }{{35}^{\circ }}\text{ }\times \text{ }cos\text{ }{{55}^{\circ }}\text{ }=\text{ }0$$, is as follows: $$\begin{aligned} & \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\sin \left( {{55}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\\ & \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{90}^{{}^\circ \;}}-{{55}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right)\,\,\,\,\,\,\,\,\because \sin \left( {{55}^{{}^\circ \;}} \right)=\cos \left( {{90}^{{}^\circ \;}}-{{55}^{{}^\circ \;}} \right) \\\ & \Rightarrow LHS=\sin \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\\ & \Rightarrow LHS=\cos \left( {{90}^{{}^\circ \;}}-{{35}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right)\,\,\,\,\,\,\,\,\,\because \sin \left( {{35}^{{}^\circ \;}} \right)=\cos \left( {{90}^{{}^\circ \;}}-{{35}^{{}^\circ \;}} \right) \\\ & \Rightarrow LHS=\cos \left( {{55}^{{}^\circ \;}} \right)\cos \left( {{35}^{{}^\circ \;}} \right)-\cos \left( {{35}^{{}^\circ \;}} \right)\cos \left( {{55}^{{}^\circ \;}} \right) \\\ & \Rightarrow LHS=0 \\\ & \Rightarrow LHS=RHS \\\ \end{aligned}$$