Question
Question: Prove the given trigonometric expression \(\sin {{10}^{0}}+\sin {{20}^{0}}+\sin {{40}^{0}}+\sin {{50...
Prove the given trigonometric expression sin100+sin200+sin400+sin500=sin700+sin800.
Solution
Hint: First group the expression as,(sin500+sin100)+(sin200+sin400) then use the formula sinc+sind=2sin2(c+d)cos2(c−d) and then after using fact that sin300=21 use the identitycos(900−θ)=sinθ.
Complete step-by-step answer:
In the question we have to prove that value of sin100+sin200+sin400+sin500 is equal to sin700+sin800 value.
In the equation left the left hand side of equation it is given,
LHS=sin100+sin200+sin400+sin500
We will group or rearrange the expression as,
LHS=(sin500+sin100)+(sin400+sin200)
Now we will apply formula,
sin(C)+sin(D)=2sin2(C+D)cos2(C−D)
We can write it as,
LHS=2sin(250+10)cos(250−10)+2sin(240+20)cos(240−20)
On solving this we get
LHS=2sin300cos200+2sin300cos100
Now using sin300=21, the above equation can be written as,
LHS=2×21×cos200+2×21×cos100=cos200+cos100
Now using formula cos(900−θ)=sinθ, the above equation can be written as
LHS=cos(900−700)+cos(900−800)
On simplifying, we get
LHS=sin700+sin800
This is equal to the right side of the expression which is sin700+sin800.
Hence proved.
Note: While solving the expression sin100+sin200+sin400+sin500, one can also pair up as (sin100+sin200)+(sin400+sin500) and use the formula of sinC+sinD and get the desired result, we will get same result.