Solveeit Logo

Question

Question: Prove the given trigonometric expression \(\sin {{10}^{0}}+\sin {{20}^{0}}+\sin {{40}^{0}}+\sin {{50...

Prove the given trigonometric expression sin100+sin200+sin400+sin500=sin700+sin800\sin {{10}^{0}}+\sin {{20}^{0}}+\sin {{40}^{0}}+\sin {{50}^{0}}=\sin {{70}^{0}}+\sin {{80}^{0}}.

Explanation

Solution

Hint: First group the expression as,(sin500+sin100)+(sin200+sin400)\left( \sin {{50}^{0}}+\sin {{10}^{0}} \right)+\left( \sin {{20}^{0}}+\sin {{40}^{0}} \right) then use the formula sinc+sind=2sin(c+d)2cos(cd)2\sin c+\sin d=2\sin \dfrac{\left( c+d \right)}{2}\cos \dfrac{\left( c-d \right)}{2} and then after using fact that sin300=12\sin {{30}^{0}}=\dfrac{1}{2} use the identitycos(900θ)=sinθ\cos \left( {{90}^{0}}-\theta \right)=\sin \theta .

Complete step-by-step answer:
In the question we have to prove that value of sin100+sin200+sin400+sin500\sin {{10}^{0}}+\sin {{20}^{0}}+\sin {{40}^{0}}+\sin {{50}^{0}} is equal to sin700+sin800\sin {{70}^{0}}+\sin {{80}^{0}} value.
In the equation left the left hand side of equation it is given,
LHS=sin100+sin200+sin400+sin500LHS=\sin {{10}^{0}}+\sin {{20}^{0}}+\sin {{40}^{0}}+\sin {{50}^{0}}
We will group or rearrange the expression as,
LHS=(sin500+sin100)+(sin400+sin200)LHS=\left( \sin {{50}^{0}}+\sin {{10}^{0}} \right)+\left( \sin {{40}^{0}}+\sin {{20}^{0}} \right)
Now we will apply formula,
sin(C)+sin(D)=2sin(C+D)2cos(CD)2\sin \left( C \right)+\sin \left( D \right)=2\sin \dfrac{\left( C+D \right)}{2}\cos \dfrac{\left( C-D \right)}{2}
We can write it as,
LHS=2sin(50+102)cos(50102)+2sin(40+202)cos(40202)LHS=2\sin \left( \dfrac{50+10}{2} \right)\cos \left( \dfrac{50-10}{2} \right)+2\sin \left( \dfrac{40+20}{2} \right)\cos \left( \dfrac{40-20}{2} \right)
On solving this we get
LHS=2sin300cos200+2sin300cos100LHS=2\sin {{30}^{0}}\cos {{20}^{0}}+2\sin {{30}^{0}}\cos {{10}^{0}}
Now using sin300=12\sin {{30}^{0}}=\dfrac{1}{2}, the above equation can be written as,
LHS=2×12×cos200+2×12×cos100=cos200+cos100LHS=2\times \dfrac{1}{2}\times \cos {{20}^{0}}+2\times \dfrac{1}{2}\times \cos {{10}^{0}}=\cos {{20}^{0}}+\cos {{10}^{0}}
Now using formula cos(900θ)=sinθ\cos \left( {{90}^{0}}-\theta \right)=\sin \theta , the above equation can be written as
LHS=cos(900700)+cos(900800)LHS=\cos \left( {{90}^{0}}-{{70}^{0}} \right)+\cos \left( {{90}^{0}}-{{80}^{0}} \right)
On simplifying, we get
LHS=sin700+sin800LHS=\sin {{70}^{0}}+\sin {{80}^{0}}
This is equal to the right side of the expression which is sin700+sin800\sin {{70}^{0}}+\sin {{80}^{0}}.
Hence proved.

Note: While solving the expression sin100+sin200+sin400+sin500\sin {{10}^{0}}+\sin {{20}^{0}}+\sin {{40}^{0}}+\sin {{50}^{0}}, one can also pair up as (sin100+sin200)+(sin400+sin500)\left( \sin {{10}^{0}}+\sin {{20}^{0}} \right)+\left( \sin {{40}^{0}}+\sin {{50}^{0}} \right) and use the formula of sinC+sinD\sin C+\sin D and get the desired result, we will get same result.