Solveeit Logo

Question

Question: Prove the given trigonometric expression: \[\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\c...

Prove the given trigonometric expression:
sin20sin40sin60sin80=316\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}=\dfrac{3}{16}

Explanation

Solution

At first convert the value of sin60\sin {{60}^{\circ }} as 32\dfrac{\sqrt{3}}{2} as it is a value of the standard angle. Then use the product sum rules which are 2sinAsinB=cos(BA)cos(A+B)2\sin A\sin B=\cos \left( B-A \right)-\cos \left( A+B \right)and 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right) Then after all this, finally use the identity sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta to get the desired results.

Complete step by step answer:
We are given the expression sin20sin40sin60sin80\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }} and we have to prove its product is 316\dfrac{3}{16}. So at first, we will write the expression as it is
sin20sin40sin60sin80\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{60}^{\circ }}\sin {{80}^{\circ }}
We can further rearrange and write it as,
sin60sin20sin40sin20\sin {{60}^{\circ }}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{20}^{\circ }}
Now, by the use of standard values of the standard angles, sin60=32\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}, we can write the expression as,
32sin20sin40sin80\dfrac{\sqrt{3}}{2}\sin {{20}^{\circ }}\sin {{40}^{\circ }}\sin {{80}^{\circ }}
Now we will multiply and divide 2 and write it as,
34(2sin20sin40)sin80\dfrac{\sqrt{3}}{4}\left( 2\sin {{20}^{\circ }}\sin {{40}^{\circ }} \right)\sin {{80}^{\circ }}
Now, we will apply the identity, 2 sin A sin B = cos (B – A) – cos (B + A).
2sin20sin40=cos(4020)cos(40+20)2\sin {{20}^{\circ }}\sin {{40}^{\circ }}=\cos \left( {{40}^{\circ }}-{{20}^{\circ }} \right)-\cos \left( {{40}^{\circ }}+{{20}^{\circ }} \right)
So, the expression holds as,
34[cos20cos60]sin80\dfrac{\sqrt{3}}{4}\left[ \cos {{20}^{\circ }}-\cos {{60}^{\circ }} \right]\sin {{80}^{\circ }}
We know that value of cos60 is 12\cos {{60}^{\circ }}\text{ is }\dfrac{1}{2}. So, we can write it as,
34(cos2012)sin80\dfrac{\sqrt{3}}{4}\left( \cos {{20}^{\circ }}-\dfrac{1}{2} \right)\sin {{80}^{\circ }}
Now, let’s expand.
34cos20sin8038sin80\dfrac{\sqrt{3}}{4}\cos {{20}^{\circ }}\sin {{80}^{\circ }}-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}
Now, let’s rewrite the expression as
38(2cos20sin80)38sin80\dfrac{\sqrt{3}}{8}\left( 2\cos {{20}^{\circ }}\sin {{80}^{\circ }} \right)-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}
Here, we will apply the identity, 2 cos A sin B = sin (A + B) – sin (A – B).
2cos20sin80=sin(20+80)sin(2080)2\cos {{20}^{\circ }}\sin {{80}^{\circ }}=\sin \left( {{20}^{\circ }}+{{80}^{\circ }} \right)-\sin \left( {{20}^{\circ }}-{{80}^{\circ }} \right)
2cos20sin80=sin(100)sin(60)2\cos {{20}^{\circ }}\sin {{80}^{\circ }}=\sin \left( {{100}^{\circ }} \right)-\sin \left( -{{60}^{\circ }} \right)
We know that the value of sin(60) as sin60\sin \left( -{{60}^{\circ }} \right)\text{ as }-\sin {{60}^{\circ }} which is equal to 32\dfrac{-\sqrt{3}}{2}.
Hence, we get the expression as,
38(sin10032)38sin80\dfrac{\sqrt{3}}{8}\left( \sin {{100}^{\circ }}-\dfrac{-\sqrt{3}}{2} \right)-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}
38sin100+38×3238sin80\dfrac{\sqrt{3}}{8}\sin {{100}^{\circ }}+\dfrac{\sqrt{3}}{8}\times \dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3}}{8}\sin {{80}^{\circ }}
We will apply sin(πθ)=sinθ\sin \left( \pi -\theta \right)=\sin \theta
sin(18080)=sin80\sin \left( {{180}^{\circ }}-80 \right)=\sin {{80}^{\circ }}
sin100=sin80\sin {{100}^{\circ }}=\sin {{80}^{\circ }}
Here, we get the expression as,
38(sin100sin80)+316\dfrac{\sqrt{3}}{8}\left( \sin {{100}^{\circ }}-\sin {{80}^{\circ }} \right)+\dfrac{3}{16}
=316=\dfrac{3}{16}

Note:
One can also do the same question by another method. Instead of using the identities one can check out trigonometric table to see the exact values of sin20o,sin40o,sin60o,sin80o\sin {{20}^{o}},\sin {{40}^{o}},\sin {{60}^{o}},\sin {{80}^{o}} and then find their product to get the answer. The process would be very time consuming and will not give accurate answers.