Solveeit Logo

Question

Question: Prove the given trigonometric expression: \[\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\tan A+\sec A\]...

Prove the given trigonometric expression: tanA+secA1tanAsecA+1=tanA+secA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\tan A+\sec A

Explanation

Solution

Hint: Simplify the left hand side of a given trigonometric expression by multiplying and dividing it by tanA+secA1\tan A+\sec A-1. Rearrange the terms and simplify the equation using the identity tan2A+1=sec2A{{\tan }^{2}}A+1={{\sec }^{2}}A to prove the given expression.

Complete step-by-step answer:

We have to prove the trigonometric expression tanA+secA1tanAsecA+1=tanA+secA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\tan A+\sec A. We will simplify the left hand side of the given equation to equate it to the right hand side.
So, we will multiply and divide tanA+secA1tanAsecA+1\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1} by tanAsecA1\tan A-\sec A-1.

Thus, we have tanA+secA1tanAsecA+1=tanA+secA1tanAsecA+1×tanAsecA1tanAsecA1\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}\times \dfrac{\tan A-\sec A-1}{\tan A-\sec A-1}.

We know the identity (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.

Substituting a=tanAsecA,b=1a=\tan A-\sec A,b=1 in the above expression, we have (tanAsecA+1)(tanAsecA1)=(tanAsecA)2(1)2\left( \tan A-\sec A+1 \right)\left( \tan A-\sec A-1 \right)={{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}.

Substituting a=tanA1,b=secAa=\tan A-1,b=\sec A in the above expression, we have (tanA+secA1)(tanAsecA1)=(tanA1)2(secA)2\left( \tan A+\sec A-1 \right)\left( \tan A-\sec A-1 \right)={{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}.

Thus, we have tanA+secA1tanAsecA+1×tanA+secA1tanA+secA1=(tanA1)2(secA)2(tanAsecA)2(1)2\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}\times \dfrac{\tan A+\sec A-1}{\tan A+\sec A-1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}.

We know that (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.

Thus, we have tanA+secA1tanAsecA+1=(tanA1)2(secA)2(tanAsecA)2(1)2=tan2A+12tanAsec2Atan2A+sec2A2tanAsecA1\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}=\dfrac{{{\tan }^{2}}A+1-2\tan A-{{\sec }^{2}}A}{{{\tan }^{2}}A+{{\sec }^{2}}A-2\tan A\sec A-1}.

We know that tan2A+1=sec2A{{\tan }^{2}}A+1={{\sec }^{2}}A.

Thus, we have tanA+secA1tanAsecA+1=(tanA1)2(secA)2(tanAsecA)2(1)2=sec2A2tanAsec2Atan2A+1+tan2A2tanAsecA1\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}=\dfrac{{{\sec }^{2}}A-2\tan A-{{\sec }^{2}}A}{{{\tan }^{2}}A+1+{{\tan }^{2}}A-2\tan A\sec A-1}.

Further simplifying the above expression, we have tanA+secA1tanAsecA+1=(tanA1)2(secA)2(tanAsecA)2(1)2=2tanA2tan2A2tanAsecA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}=\dfrac{-2\tan A}{2{{\tan }^{2}}A-2\tan A\sec A}.

Thus, we have tanA+secA1tanAsecA+1=(tanA1)2(secA)2(tanAsecA)2(1)2=tanAtanAsecAtan2A\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}=\dfrac{\tan A}{\tan A\sec A-{{\tan }^{2}}A}.

Factorizing the denominator of the above expression, we have tanA+secA1tanAsecA+1=(tanA1)2(secA)2(tanAsecA)2(1)2=tanAtanA(secAtanA)\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}=\dfrac{\tan A}{\tan A\left( \sec A-\tan A \right)}.

Thus, we have tanA+secA1tanAsecA+1=(tanA1)2(secA)2(tanAsecA)2(1)2=1secAtanA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{{{\left( \tan A-1 \right)}^{2}}-{{\left( \sec A \right)}^{2}}}{{{\left( \tan A-\sec A \right)}^{2}}-{{\left( 1 \right)}^{2}}}=\dfrac{1}{\sec A-\tan A}.

Multiplying and dividing the above expression by tanA+secA\tan A+\sec A, we have tanA+secA1tanAsecA+1=1secAtanA=1secAtanA×tanA+secAtanA+secA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1}{\sec A-\tan A}=\dfrac{1}{\sec A-\tan A}\times \dfrac{\tan A+\sec A}{\tan A+\sec A}.

Thus, we have tanA+secA1tanAsecA+1=1secAtanA=tanA+secAsec2Atan2A\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1}{\sec A-\tan A}=\dfrac{\tan A+\sec A}{{{\sec }^{2}}A-{{\tan }^{2}}A} using the identity (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}.

We know that tan2A+1=sec2A{{\tan }^{2}}A+1={{\sec }^{2}}A. Thus, we have sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1.

So, we have tanA+secA1tanAsecA+1=1secAtanA=tanA+secAsec2Atan2A=tanA+secA1=tanA+secA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1}{\sec A-\tan A}=\dfrac{\tan A+\sec A}{{{\sec }^{2}}A-{{\tan }^{2}}A}=\dfrac{\tan A+\sec A}{1}=\tan A+\sec A.

Hence, we have proved that tanA+secA1tanAsecA+1=tanA+secA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\tan A+\sec A.

Note: Usual mistakes while solving trigonometry are-
(i) Error in applying identities.
(ii) Not able to comprehend how to take the next step.
(iii) Starting the simplification of both sides simultaneously. (When solving problems you can either take the LHS or the RHS. Observe and analyze which way it is easy to arrive at the other side Use techniques such as substitution, factorisation, rationalisation, create common denominators, accordingly to simplify and attain the other side.)