Question
Question: Prove the given trigonometric expression \({{\cos }^{-1}}(x)+{{\cos }^{-1}}\left[ \dfrac{x}{2}+\dfra...
Prove the given trigonometric expression cos−1(x)+cos−1[2x+23−3x2]=3π
Solution
Hint: Substitute x=cosθ and then use the identity: 1−cos2θ=sin2θ, to simplify the second term. Write, 2x+23−3x2=21x+231−x2 and substitute, 21=cos3π. Apply the formula: cosacosb+sinasinb=cos(a−b). Finally, use the identity: cos−1(cosx)=x to get the answer.
Complete step-by-step solution -
We have to prove: cos−1(x)+cos−1[2x+23−3x2]=3π
L.H.S=cos−1(x)+cos−1[2x+23−3x2]
Substituting, x=cosθ, we get,
L.H.S=cos−1(cosθ)+cos−1[2cosθ+23−3cos2θ]⇒L.H.S=cos−1(cosθ)+cos−1[2cosθ+23(1−cos2θ)]
Using the formula: 1−cos2θ=sin2θ, we get,
L.H.S=cos−1(cosθ)+cos−1[2cosθ+23sin2θ]⇒L.H.S=cos−1(cosθ)+cos−1[2cosθ+23∣sinθ∣]
Now, since we have assumed, x=cosθ, therefore, θ=cos−1x and the range of θ is from 0 to π. That means θ lies between the 1st and 2nd quadrant.
We know that sine of an angle is positive if the angle lies between 1st and 2nd quadrant. Therefore, the expression inside the mod is positive. So, removing the modulus we get,
L.H.S=cos−1(cosθ)+cos−1[2cosθ+23sinθ]
The above expression can be written as: