Question
Question: Prove the given trigonometric expression \({{\cot }^{-1}}\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\s...
Prove the given trigonometric expression
cot−1(1+sinx−1−sinx1+sinx+1−sinx)=2x;x∈(0,4π) .
Solution
Hint: For solving this question first we will assume A=1+sinx and B=1−sinx. After that, we will use trigonometric formulas like 1=sin22x+cos22x and sinx=2sin2xcos2x for the simplification of A=1+sinx and B=1−sinx . Then, we will use the formula cot−1(cotx)=x (if x∈(0,π)) for proving the desired result.
Complete step-by-step solution -
Given:
We have to prove the following equation:
cot−1(1+sinx−1−sinx1+sinx+1−sinx)=2x;x∈(0,4π)
Now, before we proceed we should know the following formulas:
sin2θ+cos2θ=1.................(1)sinθ=2sin2θcos2θ..............(2)a2+b2+2ab=(a+b)2.........(3)a2+b2−2ab=(a−b)2.........(4)cot−1(cotx)=x (if x∈(0,π))..............(5)
Now, before we simplify the term cot−1(1+sinx−1−sinx1+sinx+1−sinx) , we should simplify 1+sinx and 1−sinx separately.
Now, let A=1+sinx and B=1−sinx . So, we will use formulas from the above equations to simplify A and B separately.
Simplification of A=1+sinx :
Now, we will use the formula from the equation to write 1=sin22x+cos22x . Then,
A=1+sinx⇒A=sin22x+cos22x+sinx
Now, we will use the formula from the equation (2) to write sinx=2sin2xcos2x in the above equation. Then,
A=sin22x+cos22x+sinx⇒A=sin22x+cos22x+2sin2xcos2x
Now, we will use the formula from the equation (3) to write sin22x+cos22x+2sin2xcos2x=(sin2x+cos2x)2 in the above equation. Then,