Solveeit Logo

Question

Question: Prove the given trigonometric equation \(\tan A + \tan ({60^o} + A) + \tan ({120^o} + A) = 3\tan 3A....

Prove the given trigonometric equation tanA+tan(60o+A)+tan(120o+A)=3tan3A.\tan A + \tan ({60^o} + A) + \tan ({120^o} + A) = 3\tan 3A.

Explanation

Solution

Hint: Here the trigonometric ratio tangent is given in the form of sum of two angles, So we use the trigonometric formulas:
(i)tan(180oA)=tanA\tan ({180^o} - A) = - \tan A
(ii)tan(A+B)=tanA+tanB1tanAtanB\tan (A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}

Complete step-by-step solution -
L.H.SL.H.S
=tanA+tan(60o+A)+tan(120o+A) =tanA+tan(60o+A)+tan(180o(60oA)) =tanA+tan(60o+A)tan(60oA) =tanA+tan60o+tanA1tan60otanAtan60otanA1+tan60otanA =tanA+3+tanA13tanA3tanA1+3tanA =tanA+(3+tanA)(1+3tanA)(3tanA)(13tanA)(13tanA)(1+3tanA) =tanA+[3+3tanA+tanA+3tan2A3+3tanA+tanA3tan2A12(3tanA)2] =tanA+[8tanA13tan2A] =[tanA3tan3A+8tanA13tan2A] =9tanA3tan3A13tan2A = \tan A + \tan ({60^o} + A) + \tan ({120^o} + A) \\\ = \tan A + \tan ({60^o} + A) + \tan ({180^o} - ({60^o} - A)) \\\ = \tan A + \tan ({60^o} + A) - \tan ({60^o} - A) \\\ = \tan A + \dfrac{{\tan {{60}^o} + \tan A}}{{1 - \tan {{60}^o}\tan A}} - \dfrac{{\tan {{60}^o} - \tan A}}{{1 + \tan {{60}^o}\tan A}} \\\ = \tan A + \dfrac{{\sqrt 3 + \tan A}}{{1 - \sqrt 3 \tan A}} - \dfrac{{\sqrt 3 - \tan A}}{{1 + \sqrt 3 \tan A}} \\\ = \tan A + \dfrac{{(\sqrt 3 + \tan A)(1 + \sqrt 3 \tan A) - (\sqrt 3 - \tan A)(1 - \sqrt 3 \tan A)}}{{(1 - \sqrt 3 \tan A)(1 + \sqrt 3 \tan A)}} \\\ = \tan A + \left[ {\dfrac{{\sqrt 3 + 3\tan A + \tan A + \sqrt 3 {{\tan }^2}A - \sqrt 3 + 3\tan A + \tan A - \sqrt 3 {{\tan }^2}A}}{{{1^2} - {{(\sqrt 3 \tan A)}^2}}}} \right] \\\ = \tan A + \left[ {\dfrac{{8\tan A}}{{1 - 3{{\tan }^2}A}}} \right] \\\ = \left[ {\dfrac{{\tan A - 3{{\tan }^3}A + 8\tan A}}{{1 - 3{{\tan }^2}A}}} \right] \\\ = \dfrac{{9\tan A - 3{{\tan }^3}A}}{{1 - 3{{\tan }^2}A}} \\\
Taking 3 common,
=3(3tanAtan3A13tan2A) =3tan3A  = 3\left( {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right) \\\ = 3\tan 3A \\\
=R.H.S= R.H.S

Note: To solve this type of question, we must remember some basic trigonometric identity formulae. One also must know the value of tan60o\tan {60^o}. One basic identity used is this problem is
tan3A=(3tanAtan3A13tan2A)\tan 3A = \left( {\dfrac{{3\tan A - {{\tan }^3}A}}{{1 - 3{{\tan }^2}A}}} \right)