Question
Question: Prove the given trigonometric equation \(\tan A + \tan ({60^o} + A) + \tan ({120^o} + A) = 3\tan 3A....
Prove the given trigonometric equation tanA+tan(60o+A)+tan(120o+A)=3tan3A.
Solution
Hint: Here the trigonometric ratio tangent is given in the form of sum of two angles, So we use the trigonometric formulas:
(i)tan(180o−A)=−tanA
(ii)tan(A+B)=1−tanAtanBtanA+tanB
Complete step-by-step solution -
L.H.S
=tanA+tan(60o+A)+tan(120o+A) =tanA+tan(60o+A)+tan(180o−(60o−A)) =tanA+tan(60o+A)−tan(60o−A) =tanA+1−tan60otanAtan60o+tanA−1+tan60otanAtan60o−tanA =tanA+1−3tanA3+tanA−1+3tanA3−tanA =tanA+(1−3tanA)(1+3tanA)(3+tanA)(1+3tanA)−(3−tanA)(1−3tanA) =tanA+[12−(3tanA)23+3tanA+tanA+3tan2A−3+3tanA+tanA−3tan2A] =tanA+[1−3tan2A8tanA] =[1−3tan2AtanA−3tan3A+8tanA] =1−3tan2A9tanA−3tan3A
Taking 3 common,
=3(1−3tan2A3tanA−tan3A) =3tan3A
=R.H.S
Note: To solve this type of question, we must remember some basic trigonometric identity formulae. One also must know the value of tan60o. One basic identity used is this problem is
tan3A=(1−3tan2A3tanA−tan3A)