Solveeit Logo

Question

Question: Prove the given trigonometric equation such that: \[\cos 4x=1-8{{\sin }^{2}}x {{\cos }^{2}}x\]...

Prove the given trigonometric equation such that:
cos4x=18sin2xcos2x\cos 4x=1-8{{\sin }^{2}}x {{\cos }^{2}}x

Explanation

Solution

Hint: For the given questions we will use the trigonometric identity as follows:
cos2A=cos2Asin2A=2cos2A1\cos 2A={{\cos }^{2}}A-{{\sin }^{2}}A=2{{\cos }^{2}}A-1. So we can use the above formula with cos4x to get the required expression.

Complete step-by-step solution -
We have been asked to prove cos4x=18sin2xcos2x\cos 4x=1-8{{\sin }^{2}}x {{\cos }^{2}}x.
We know that cos2A=2cos2A1\cos 2A=2{{\cos }^{2}}A-1.
Now taking left hand side =cos4x=\cos 4x
cos4x=cos2(2x)\Rightarrow \cos 4x=\cos 2(2x)
Since it is in the form of cos2A, here A=2xA=2x
cos4x=2cos2(2x)1\Rightarrow \cos 4x=2{{\cos }^{2}}(2x)-1
We know that cos2x=2cos2x1\cos 2x=2{{\cos }^{2}}x-1. So by substituting the values of cos2x in the above expression, we get as follows:
cos4x=2(2cos2x1)21\Rightarrow \cos 4x=2{{\left( 2{{\cos }^{2}}x-1 \right)}^{2}}-1
By using (ab)2=a2+2abb2{{\left( a-b \right)}^{2}}={{a}^{2}}+2ab-{{b}^{2}} we get as follows:

& \Rightarrow \cos 4x=2\left[ {{\left( 2{{\cos }^{2}}x \right)}^{2}}-2\left( 2{{\cos }^{2}}x \right).1+1 \right]-1 \\\ & =2\left[ {{\left( 2{{\cos }^{2}}x \right)}^{2}}-2\left( 2{{\cos }^{2}}x \right).1+1 \right]-1 \\\ & =2\left[ 4{{\cos }^{2}}x\left( {{\cos }^{2}}x-1 \right)+1 \right]-1 \\\ \end{aligned}$$ Since we know that $${{\cos }^{2}}x-1=-{{\sin }^{2}}x$$ $$\begin{aligned} & \Rightarrow \cos 4x=2\left[ 4{{\cos }^{2}}x\left( -{{\sin }^{2}}x \right)+1 \right]-1 \\\ & =2\left[ -4{{\cos }^{2}}x {{\sin }^{2}}x+1 \right]-1 \\\ & =-8{{\cos }^{2}}x {{\sin }^{2}}x+2-1 \\\ & =-8{{\cos }^{2}}x {{\sin }^{2}}x+1 \\\ \end{aligned}$$ $$\Rightarrow \cos 4x=1-8{{\cos }^{2}}x {{\sin }^{2}}x=$$ right hand side Hence the left hand side is equal to the right hand side. Therefore the given expression is proved. Note: Be careful of the sign while doing calculation. Also don’t substitute the value of $$\left( {{\cos }^{2}}x-1 \right)$$ is $${{\sin }^{2}}x$$ by mistake since we know that $$\left( {{\cos }^{2}}x-1 \right)$$ is equal to $$\left( -{{\sin }^{2}}x \right)$$ so take care of it. We can also prove the given trigonometric expression by considering the right hand side of the equation.