Solveeit Logo

Question

Question: Prove the given inverse trigonometric expression, \[{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \r...

Prove the given inverse trigonometric expression, tan1(cosx1+sinx)=π4x2,x(π2,π2){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2},x\in \left( -\dfrac{\pi }{2},\dfrac{\pi }{2} \right) .

Explanation

Solution

Hint: In this question, we have the inverse tan function, but we don’t have a tan function inside that inverse function. So, first, we need to convert that part in terms of tan. Using the formula cosx=cos2x2sin2x2\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2} , sinx=2.sinx2.cosx2\sin x=2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2} and the identity 1=sin2x2+cos2x21={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}. Put these all, and solve further.

Complete step-by-step solution -
According to the question, we have
tan1(cosx1+sinx){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)……………(1)
In equation (1), we have the tan inverse of cosx1+sinx\dfrac{\cos x}{1+\sin x}.
Here we have to remove this inverse of tan. For removing we have to make the term cosx1+sinx\dfrac{\cos x}{1+\sin x} in the form of tan.
Let’s proceed with the numerator.
We know that,
cosx=cos2x2sin2x2\cos x={{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}………….(2)
We also know that,
sinx=2.sinx2.cosx2\sin x=2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}……………..(3)
1=sin2x2+cos2x21={{\sin }^{2}}\dfrac{x}{2}+{{\cos }^{2}}\dfrac{x}{2}……………..(4)
Adding equation (3) and equation (4), we get
1+sinx=cos2x2+sin2x2+2.sinx2.cosx21+\sin x={{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2} ………….(5)
From equation (1), we have tan1(cosx1+sinx){{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right) .
Putting equation (2) and equation (5) in equation (1), we get
tan1(cos2x2sin2x2cos2x2+sin2x2+2cosx2.sinx2){{\tan }^{-1}}\left( \dfrac{{{\cos }^{2}}\dfrac{x}{2}-{{\sin }^{2}}\dfrac{x}{2}}{{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2\cos \dfrac{x}{2}.\sin \dfrac{x}{2}} \right) ……………(6)
We also know that,
A2B2=(A+B). (AB){{A}^{2}}-{{B}^{2}}=\left( A+B \right).\text{ }\left( A-B \right) .
Similarily equation (2) can be written as,
(cosx2sinx2).(cosx2+sinx2)\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right).\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right) …………..(7)
And also,
(A+B)2=A2+B2+2.A.B{{\left( A+B \right)}^{2}}={{A}^{2}}+{{B}^{2}}+2.A.B .
Similarily equation (5) can be written as,
cos2x2+sin2x2+2.sinx2.cosx2=(cosx2+sinx2)2{{\cos }^{2}}\dfrac{x}{2}+{{\sin }^{2}}\dfrac{x}{2}+2.\sin \dfrac{x}{2}.\cos \dfrac{x}{2}={{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}…………….(8)
Using equation (7) and equation (8), we can write equation (6) as,
tan1((cosx2sinx2)(cosx2+sinx2)(cosx2+sinx2)2){{\tan }^{-1}}\left( \dfrac{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}{{{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)}^{2}}} \right)
(cosx2sinx2)\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) is common in the numerator as well as the denominator. So, we can cancel one (cosx2sinx2)\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right) in both numerator and denominator. Our equation will look like, tan1(cosx2sinx2cosx2+sinx2){{\tan }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right) .
Dividing by cosx2\cos \dfrac{x}{2} in numerator and denominator, we get
tan1(1sinx2cosx21+sinx2cosx2){{\tan }^{-1}}\left( \dfrac{1-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}{1+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}} \right)………………(9)
We know that, sinx2cosx2=tanx2\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}=\tan \dfrac{x}{2} ……………..(10)
Using equation (10), equation (9) can be written as
tan1(1tanx21+tanx2){{\tan }^{-1}}\left( \dfrac{1-\tan \dfrac{x}{2}}{1+\tan \dfrac{x}{2}} \right)
tan1(1tanx21+1.tanx2){{\tan }^{-1}}\left( \dfrac{1-\tan \dfrac{x}{2}}{1+1.\tan \dfrac{x}{2}} \right)……………(11)
We also know, tanπ4=1\tan \dfrac{\pi }{4}=1 ……………(12)
Using equation (12), equation (11) can be written as
tan1(tanπ4tanx21+tanπ4.tanx2){{\tan }^{-1}}\left( \dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} \right)
=tan1(tan(π4x2))={{\tan }^{-1}}\left( \tan \left( \dfrac{\pi }{4}-\dfrac{x}{2} \right) \right)
=π4x2=\dfrac{\pi }{4}-\dfrac{x}{2}
So, tan1(cosx1+sinx)=π4x2{{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \right)=\dfrac{\pi }{4}-\dfrac{x}{2} .
Therefore, LHS=RHS.
Hence, proved.

Note: In this question, we have to be careful during the simplification of the inverse tan function. As tanπ4=1\tan \dfrac{\pi }{4}=1 and also tan(5π4)=1\tan \left( \dfrac{5\pi }{4} \right)=1 . If we take tan(5π4)=1\tan \left( \dfrac{5\pi }{4} \right)=1 , then it will be wrong. As in RHS, we have π4\dfrac{\pi }{4} , so we have to continue with tan(π4)=1\tan \left( \dfrac{\pi }{4} \right)=1 .