Question
Question: Prove the given inverse trigonometric expression \({{\tan }^{-1}}\left( \dfrac{\cos x}{1+\sin x} \ri...
Prove the given inverse trigonometric expression tan−1(1+sinxcosx)=4π−2x,x∈(−2π,2π).
Solution
Hint: Use the half angle formula given by: cosx=cos22x−sin22x, to change the numerator. Use the algebraic identity: a2−b2=(a+b)(a−b), to break the terms of numerator as a product of two terms. Now, write sinx=2sin2xcos2x and 1=cos22x+sin22x. Using these substitutions, write, 1+sinx=(cos2x+sin2x)2. Cancel the common terms. Now, divide the numerator and denominator by cos2x and use the formula: 1+tanθ1−tanθ=tan(4π−θ). Finally, use the identity: tan−1(tanθ)=θ where θ∈(2−π,2π), to get the answer.
Complete step-by-step solution -
We have to prove: tan−1(1+sinxcosx)=4π−2x
L.H.S=tan−1[1+sinxcosx]
Using the half angle formula given by: cosx=cos22x−sin22x, we get,
L.H.S=tan−11+sinxcos22x−sin22x
Using the algebraic identity: a2−b2=(a+b)(a−b), we get,
L.H.S=tan−11+sinx(cos2x−sin2x)(cos2x+sin2x)
Now, in the denominator, writing sinx=2sin2xcos2x and 1=cos22x+sin22x, we get,
1+sinx=cos22x+sin22x+2sin2xcos2x. This is of the form: a2+b2+2ab=(a+b)2.
Therefore, 1+sinx=(cos2x+sin2x)2.
This can be written as:
1+sinx=(cos2x+sin2x)(cos2x+sin2x)
Therefore, the expression becomes:
L.H.S=tan−1(cos2x+sin2x)(cos2x+sin2x)(cos2x−sin2x)(cos2x+sin2x)
Cancelling the common terms, we get,
L.H.S=tan−1(cos2x+sin2x)(cos2x−sin2x)
Dividing both numerator and denominator by cos2x, we get,