Question
Question: Prove the given inverse trigonometric expression: \(\tan \left( \dfrac{1}{2}{{\sin }^{-1}}\left( \df...
Prove the given inverse trigonometric expression: tan(21sin−1(43))=34−7.
Solution
Hint: Assume, sin−1(43)=θ. Convert this sine inverse function into tan inverse function. In the given sine inverse function, assume the numerator as perpendicular and denominator as hypotenuse. Find the base using Pythagoras theorem given by: (hypotenuse)2=(base)2+(perpendicular)2. So, now we have to find the value of tan(2θ). Use the half angle formula: tanθ=1−tan2(2θ)2tan(2θ), to form a quadratic equation in tan(2θ) by substituting the value of tanθ. Now, solve this quadratic equation to get the answer.
Complete step-by-step solution -
Let us assume: sin−1(43)=θ.
We know that, sinθ=HypotenusePerpendicular, therefore, θ=sin−1(HypotenusePerpendicular). On comparing we get that, in sin−1(43), 3 is the perpendicular and 4 is the hypotenuse.
Using Pythagoras theorem given by: (hypotenuse)2=(base)2+(perpendicular)2, we have,
(base)2=(hypotenuse)2−(perpendicular)2⇒base=(hypotenuse)2−(perpendicular)2⇒base=42−32⇒base=16−9⇒base=7
Now, we know that, tanθ=BasePerpendicular, therefore, θ=tan−1(BasePerpendicular).
⇒sin−1(43)=tan−1(73)
Since, we have assumed, sin−1(43)=θ.
⇒tan−1(73)=θ⇒tanθ=73..................(i)
Now, the expression: tan(21sin−1(43)) becomes tan(2θ).
Now, applying the half angle formula: tanθ=1−tan2(2θ)2tan(2θ), and substituting the value of tanθ from equation (i), we get,
73=1−tan2(2θ)2tan(2θ)
By cross-multiplication we get,
3−3tan2(2θ)=27tan(2θ)⇒3tan2(2θ)+27tan(2θ)−3=0
Solving this quadratic equation by discriminant method, we get,