Solveeit Logo

Question

Question: Prove the given inverse trigonometric expression: \(\tan \left( \dfrac{1}{2}{{\sin }^{-1}}\left( \df...

Prove the given inverse trigonometric expression: tan(12sin1(34))=473\tan \left( \dfrac{1}{2}{{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right)=\dfrac{4-\sqrt{7}}{3}.

Explanation

Solution

Hint: Assume, sin1(34)=θ{{\sin }^{-1}}\left( \dfrac{3}{4} \right)=\theta . Convert this sine inverse function into tan inverse function. In the given sine inverse function, assume the numerator as perpendicular and denominator as hypotenuse. Find the base using Pythagoras theorem given by: (hypotenuse)2=(base)2+(perpendicular)2\text{(hypotenuse)}^{2}=\text{(base)}^{2}+\text{(perpendicular)}^{2}. So, now we have to find the value of tan(θ2)\tan \left( \dfrac{\theta }{2} \right). Use the half angle formula: tanθ=2tan(θ2)1tan2(θ2)\tan \theta =\dfrac{2\tan \left( \dfrac{\theta }{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}, to form a quadratic equation in tan(θ2)\tan \left( \dfrac{\theta }{2} \right) by substituting the value of tanθ\tan \theta . Now, solve this quadratic equation to get the answer.

Complete step-by-step solution -
Let us assume: sin1(34)=θ{{\sin }^{-1}}\left( \dfrac{3}{4} \right)=\theta .
We know that, sinθ=PerpendicularHypotenuse\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}, therefore, θ=sin1(PerpendicularHypotenuse)\theta ={{\sin }^{-1}}\left( \dfrac{\text{Perpendicular}}{\text{Hypotenuse}} \right). On comparing we get that, in sin1(34){{\sin }^{-1}}\left( \dfrac{3}{4} \right), 3 is the perpendicular and 4 is the hypotenuse.

Using Pythagoras theorem given by: (hypotenuse)2=(base)2+(perpendicular)2\text{(hypotenuse)}^{2}=\text{(base)}^{2}+\text{(perpendicular)}^{2}, we have,
(base)2=(hypotenuse)2(perpendicular)2 base=(hypotenuse)2(perpendicular)2 base=4232 base=169 base=7 \begin{aligned} & \text{(base)}^{2}=\text{(hypotenuse)}^{2}-\text{(perpendicular)}^{2} \\\ & \Rightarrow \text{base}=\sqrt{\text{(hypotenuse)}^{2}-\text{(perpendicular)}^{2}} \\\ & \Rightarrow \text{base}=\sqrt{{{4}^{\text{2}}}-{{3}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{16-9} \\\ & \Rightarrow \text{base}=\sqrt{7} \\\ \end{aligned}
Now, we know that, tanθ=PerpendicularBase\tan \theta =\dfrac{\text{Perpendicular}}{\text{Base}}, therefore, θ=tan1(PerpendicularBase)\theta ={{\tan }^{-1}}\left( \dfrac{\text{Perpendicular}}{\text{Base}} \right).
sin1(34)=tan1(37)\Rightarrow {{\sin }^{-1}}\left( \dfrac{3}{4} \right)={{\tan }^{-1}}\left( \dfrac{3}{\sqrt{7}} \right)
Since, we have assumed, sin1(34)=θ{{\sin }^{-1}}\left( \dfrac{3}{4} \right)=\theta .
tan1(37)=θ tanθ=37..................(i) \begin{aligned} & \Rightarrow {{\tan }^{-1}}\left( \dfrac{3}{\sqrt{7}} \right)=\theta \\\ & \Rightarrow \tan \theta =\dfrac{3}{\sqrt{7}}..................(i) \\\ \end{aligned}
Now, the expression: tan(12sin1(34))\tan \left( \dfrac{1}{2}{{\sin }^{-1}}\left( \dfrac{3}{4} \right) \right) becomes tan(θ2)\tan \left( \dfrac{\theta }{2} \right).
Now, applying the half angle formula: tanθ=2tan(θ2)1tan2(θ2)\tan \theta =\dfrac{2\tan \left( \dfrac{\theta }{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}, and substituting the value of tanθ\tan \theta from equation (i), we get,
37=2tan(θ2)1tan2(θ2)\dfrac{3}{\sqrt{7}}=\dfrac{2\tan \left( \dfrac{\theta }{2} \right)}{1-{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)}
By cross-multiplication we get,
33tan2(θ2)=27tan(θ2) 3tan2(θ2)+27tan(θ2)3=0 \begin{aligned} & 3-3{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)=2\sqrt{7}\tan \left( \dfrac{\theta }{2} \right) \\\ & \Rightarrow 3{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)+2\sqrt{7}\tan \left( \dfrac{\theta }{2} \right)-3=0 \\\ \end{aligned}
Solving this quadratic equation by discriminant method, we get,

& \tan \left( \dfrac{\theta }{2} \right)=\dfrac{-2\sqrt{7}\pm \sqrt{{{\left( 2\sqrt{7} \right)}^{2}}-4\times 3\times (-3)}}{2\times 3} \\\ & \Rightarrow \tan \left( \dfrac{\theta }{2} \right)=\dfrac{-2\sqrt{7}\pm \sqrt{28+36}}{6} \\\ & \Rightarrow \tan \left( \dfrac{\theta }{2} \right)=\dfrac{-2\sqrt{7}\pm \sqrt{64}}{6} \\\ & \Rightarrow \tan \left( \dfrac{\theta }{2} \right)=\dfrac{-2\sqrt{7}\pm 8}{6} \\\ & \Rightarrow \tan \left( \dfrac{\theta }{2} \right)=\dfrac{-\sqrt{7}\pm 4}{3} \\\ & \text{either }\tan \left( \dfrac{\theta }{2} \right)=\dfrac{-\sqrt{7}+4}{3}\text{ or }\tan \left( \dfrac{\theta }{2} \right)=\dfrac{-\sqrt{7}-4}{3} \\\ \end{aligned}$$ Since, $\sin \theta $ is positive, therefore, $\theta $ must be lying in the first quadrant. Hence, $\left( \dfrac{\theta }{2} \right)$ must lie in the first quadrant. So, $\tan \left( \dfrac{\theta }{2} \right)$ must be positive. Hence, the only value of $$\tan \left( \dfrac{\theta }{2} \right)=\dfrac{4-\sqrt{7}}{3}$$. Note: There are many alternate ways to solve this question. We can convert the given sine inverse functions, in the L.H.S, to any of the desired inverse functions and then use the Pythagoras theorem to get the answer. Here, we have changed it in tan inverse function. You may change it in cosine inverse function by taking the ratio of base and hypotenuse and then apply the formula: $${{\tan }^{2}}\left( \dfrac{\theta }{2} \right)=\dfrac{1-\cos \theta }{1+\cos \theta }$$, to get the answer.