Question
Question: Prove the given inverse trigonometric expression \({{\tan }^{-1}}\left[ \dfrac{\sqrt{1+x}-\sqrt{1-x}...
Prove the given inverse trigonometric expression tan−1[1+x+1−x1+x−1−x]=4π−21cos−1x,2−1≤x≤1.
Solution
Hint: Substitute x=cosθ and then use the half angle formula given by: 1+cosθ=2cos22θ and 1−cosθ=2sin22θ. Cancel the common terms and remove the square root by using mod. Now, check whether the expression inside the mod is positive or negative. If it is positive then, remove the mod simply and if it is negative then remove the mod by adding a negative sign in the expression. Now, divide the numerator and denominator by cos2θ and use the formula: 1+tanθ1−tanθ=tan(4π−θ). Finally, use the identity: tan−1(tanθ)=θ where θ∈(2−π,2π) to get the answer.
Complete step-by-step solution -
We have to prove: tan−1[1+x+1−x1+x−1−x]=4π−21cos−1x
L.H.S=tan−1[1+x+1−x1+x−1−x]
Substituting, x=cosθ, we get,
L.H.S=tan−1[1+x+1−x1+x−1−x]=tan−1[1+cosθ+1−cosθ1+cosθ−1−cosθ]
Using the formula: 1+cosθ=2cos22θ and 1−cosθ=2sin22θ, we get,
L.H.S=tan−12cos22θ+2sin22θ2cos22θ−2sin22θ
Cancelling 2 from numerator and denominator, we get,