Solveeit Logo

Question

Question: Prove the given inverse trigonometric expression \({{\sin }^{-1}}\left( \dfrac{63}{65} \right)={{\si...

Prove the given inverse trigonometric expression sin1(6365)=sin1(513)+cos1(35){{\sin }^{-1}}\left( \dfrac{63}{65} \right)={{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right).

Explanation

Solution

We start solving this problem by first bringing sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right) to the LHS and convert the given sine inverse functions, in the L.H.S, into cosine inverse functions. In the given two sine inverse functions, we assume the numerator as perpendicular and denominator as hypotenuse. Then we find the base in both the terms using Pythagoras theorem given by hypotenuse2=base2+perpendicular2\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}. Then after converting them into cosine inverse, we use the formula cos1xcos1y=cos1(xy+1x21y2){{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right), if x,y0x,y\ge 0 and x2+y21{{x}^{2}}+{{y}^{2}}\le 1, and check if the values we got satisfy the assumed formula and find the value of it, thereby proving the given statement.

Complete step-by-step solution:
First let us change sin1(6365){{\sin }^{-1}}\left( \dfrac{63}{65} \right) into cosine inverse function.
Let us assume that sin1(6365)=α{{\sin }^{-1}}\left( \dfrac{63}{65} \right)=\alpha . Now let us find the value of cosα\cos \alpha .
We know that, sinθ=PerpendicularHypotenuse\sin \theta =\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}, therefore, θ=sin1(PerpendicularHypotenuse)\theta ={{\sin }^{-1}}\left( \dfrac{\text{Perpendicular}}{\text{Hypotenuse}} \right). On comparing we get that, in sin1(6365){{\sin }^{-1}}\left( \dfrac{63}{65} \right), 63 is the perpendicular and 65 is the hypotenuse.

Using Pythagoras theorem given by: hypotenuse2=base2+perpendicular2\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}, we have,
base2=hypotenuse2perpendicular2 base=hypotenuse2perpendicular2 base=652632 base=(65+63)(6563) base=2×128 base=256 base=16 \begin{aligned} & \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\\ & \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{{{65}^{\text{2}}}-{{63}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{\left( 65+63 \right)\left( 65-63 \right)} \\\ & \Rightarrow \text{base}=\sqrt{2\times 128} \\\ & \Rightarrow \text{base}=\sqrt{256} \\\ & \Rightarrow \text{base}=16 \\\ \end{aligned}
Now, we know that, cosθ=BaseHypotenuse\cos \theta =\dfrac{\text{Base}}{\text{Hypotenuse}}.
So, we get the value cosα=1665\cos \alpha =\dfrac{16}{65}. Then we get,
sin1(6365)=α=cos1(1665).............(1)\Rightarrow {{\sin }^{-1}}\left( \dfrac{63}{65} \right)=\alpha ={{\cos }^{-1}}\left( \dfrac{16}{65} \right).............\left( 1 \right)
Similarly, let us change sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right) into cosine inverse function.
Let us assume that sin1(513)=β{{\sin }^{-1}}\left( \dfrac{5}{13} \right)=\beta . Now let us find the value of cosβ\cos \beta .
In sin1(513){{\sin }^{-1}}\left( \dfrac{5}{13} \right), 5 is the perpendicular and 13 is the hypotenuse.

Using Pythagoras theorem given by: hypotenuse2=base2+perpendicular2\text{hypotenus}{{\text{e}}^{\text{2}}}=\text{bas}{{\text{e}}^{\text{2}}}+\text{perpendicula}{{\text{r}}^{\text{2}}}, we have,
base2=hypotenuse2perpendicular2 base=hypotenuse2perpendicular2 base=13252 base=16925 base=144=12 \begin{aligned} & \text{bas}{{\text{e}}^{\text{2}}}=\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}} \\\ & \Rightarrow \text{base}=\sqrt{\text{hypotenus}{{\text{e}}^{\text{2}}}-\text{perpendicula}{{\text{r}}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{{{13}^{\text{2}}}-{{5}^{\text{2}}}} \\\ & \Rightarrow \text{base}=\sqrt{169-25} \\\ & \Rightarrow \text{base}=\sqrt{144}=12 \\\ \end{aligned}
So, we get the value cosβ=1213\cos \beta =\dfrac{12}{13}. Then we get,
sin1(513)=β=cos1(1213).........(2)\Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)=\beta ={{\cos }^{-1}}\left( \dfrac{12}{13} \right).........\left( 2 \right)
From equations (1) and (2) we can say that,
sin1(6365)sin1(513)=cos1(1665)cos1(1213)..........(3)\Rightarrow {{\sin }^{-1}}\left( \dfrac{63}{65} \right)-{{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{16}{65} \right)-{{\cos }^{-1}}\left( \dfrac{12}{13} \right)..........\left( 3 \right)
Now let us consider the value cos1(1665)cos1(1213){{\cos }^{-1}}\left( \dfrac{16}{65} \right)-{{\cos }^{-1}}\left( \dfrac{12}{13} \right).
Now let us consider the formula, cos1xcos1y=cos1(xy+1x21y2){{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right) if x,y0x,y\ge 0 and x2+y21{{x}^{2}}+{{y}^{2}}\le 1.
Now let us verify if we can apply this formula or not.
Here x=1665 and y=1213x=\dfrac{16}{65}\text{ and }y=\dfrac{12}{13} are greater than zero.
(1665)2+(1213)2 2564225+144169 256+36004225 385642251 \begin{aligned} & \Rightarrow {{\left( \dfrac{16}{65} \right)}^{2}}+{{\left( \dfrac{12}{13} \right)}^{2}} \\\ & \Rightarrow \dfrac{256}{4225}+\dfrac{144}{169} \\\ & \Rightarrow \dfrac{256+3600}{4225} \\\ & \Rightarrow \dfrac{3856}{4225}\le 1 \\\ \end{aligned}
So, we can use the above formula. Then we get,

& {{\cos }^{-1}}\left( \dfrac{16}{65} \right)-{{\cos }^{-1}}\left( \dfrac{12}{13} \right) \\\ & ={{\cos }^{-1}}\left( \dfrac{16}{65}\times \dfrac{12}{13}+\sqrt{1-{{\left( \dfrac{16}{65} \right)}^{2}}}\sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \right) \\\ \end{aligned}$$ Squaring the values that are inside the square roots, we get, $$\begin{aligned} & ={{\cos }^{-1}}\left( \dfrac{192}{845}+\sqrt{1-\dfrac{256}{4225}}\sqrt{1-\dfrac{144}{169}} \right) \\\ & ={{\cos }^{-1}}\left( \dfrac{192}{845}+\sqrt{\dfrac{3969}{4225}}\sqrt{\dfrac{25}{169}} \right) \\\ \end{aligned}$$ Now let us write them as the squares, $$={{\cos }^{-1}}\left( \dfrac{192}{845}+\sqrt{{{\left( \dfrac{63}{65} \right)}^{2}}}\sqrt{{{\left( \dfrac{5}{13} \right)}^{2}}} \right)$$ Finding the square roots in the above expression, we get, $$={{\cos }^{-1}}\left( \dfrac{192}{845}+\dfrac{63}{65}\times \dfrac{5}{13} \right)$$ $$\begin{aligned} & ={{\cos }^{-1}}\left( \dfrac{192}{845}+\dfrac{315}{845} \right) \\\ & ={{\cos }^{-1}}\left( \dfrac{192+315}{845} \right) \\\ & ={{\cos }^{-1}}\left( \dfrac{507}{845} \right) \\\ \end{aligned}$$ Simplifying it we get, $$={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$$ So, we get that ${{\cos }^{-1}}\left( \dfrac{16}{65} \right)-{{\cos }^{-1}}\left( \dfrac{12}{13} \right)={{\cos }^{-1}}\dfrac{3}{5}$. Substituting this value in equation (3) we get, ${{\sin }^{-1}}\left( \dfrac{63}{65} \right)-{{\sin }^{-1}}\left( \dfrac{5}{13} \right)={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ Now, taking ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ to the R.H.S, we get, ${{\sin }^{-1}}\left( \dfrac{63}{65} \right)={{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ Hence Proved. **Note:** There is a possibility of one making a mistake while solving this problem by not checking the if the values we have for x and y satisfy the conditions for the formula, ${{\cos }^{-1}}x-{{\cos }^{-1}}y={{\cos }^{-1}}\left( xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)$ if $x,y\ge 0$ and ${{x}^{2}}+{{y}^{2}}\le 1$. Then, if they satisfy these conditions, we will use this formula otherwise we need to use the formula, ${{\cos }^{-1}}x-{{\cos }^{-1}}y=\pi -{{\cos }^{-1}}\left( xy+\sqrt{1-{{x}^{2}}}\sqrt{1-{{y}^{2}}} \right)$ if $x,y\ge 0$ and ${{x}^{2}}+{{y}^{2}}\ge 1$.