Solveeit Logo

Question

Question: Prove the given expression \[{{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}={{\sin }^{-1}}\...

Prove the given expression cos11213+sin135=sin15665{{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}={{\sin }^{-1}}\dfrac{56}{65} .

Explanation

Solution

Hint: In this question, we have different inverse trigonometric functions in LHS. In LHS, we have cosine inverse function and sine inverse function. On the other hand, in RHS, we have a sine inverse function. So, in LHS, our target is to make cosine inverse function into a sine inverse function. We consider α=cos11213\alpha ={{\cos }^{-1}}\dfrac{12}{13} and β=sin135\beta ={{\sin }^{-1}}\dfrac{3}{5} . Transform cosα\cos \alpha into sinαsin\alpha .

Then using the formula, sin(α+β)=sinα.cosβ+sinβ.cosα\sin (\alpha +\beta )=sin\alpha .cos\beta +\sin \beta .cos\alpha , solve it further.

Complete step-by-step solution -

Let us assume,

α=cos11213\alpha ={{\cos }^{-1}}\dfrac{12}{13}……………..(1)

β=sin135\beta ={{\sin }^{-1}}\dfrac{3}{5}………………..(2)

Taking cos in both LHS and RHS in equation(1), we get

α=cos11213\alpha ={{\cos }^{-1}}\dfrac{12}{13}

cosα=cos(cos11213)\Rightarrow \cos \alpha =cos\left( {{\cos }^{-1}}\dfrac{12}{13} \right) ……………….(3)

We know the property that, cos(cos1x)=x\cos ({{\cos }^{-1}}x)=x . Using this property in equation (3), we get

cosα=1213\cos \alpha =\dfrac{12}{13}………………..(4)

Taking sin in both LHS and RHS in equation(2), we get

β=sin135\beta ={{\sin }^{-1}}\dfrac{3}{5}

sinβ=sin(sin135)\Rightarrow \sin \beta =\sin \left( {{\sin }^{-1}}\dfrac{3}{5} \right) ……………………..(5)

We know the property that, sin(sin1x)=xsin(si{{n}^{-1}}x)=x . Using this property in equation (5), we get

sinβ=35\sin \beta =\dfrac{3}{5}………………….(6)

According to the question, in LHS we have

cos11213+sin135{{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}………………(7)

Using equation(1) and equation(2) in equation(7), we have

α+β\alpha +\beta………………(8)

This means we have to find the value of α+β\alpha +\beta .

In RHS we have inverse sine function. So, here we have to take sin in equation(8).

sin(α+β)=sinαcosβ+cosαsinβ\sin (\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta……………….(9)

From equation(4) and equation(6), we have the value of cosα\cos \alpha and sinβ\sin \beta .

But we don’t have the value of sinαsin\alpha and cosβ\cos \beta .

Also, we know the identity, sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1………….(10)

Using equation(4) and equation(6), we can get the value of sinαsin\alpha and cosβ\cos \beta .

Replacing x by α\alpha in equation (10), we get

sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1

& \Rightarrow {{\sin }^{2}}\alpha =1-{{\cos }^{2}}\alpha \\\ & \Rightarrow \sin \alpha =\sqrt{1-{{\cos }^{2}}\alpha } \\\ \end{aligned}$$ Substituting the value of $$\cos \alpha =\dfrac{12}{13}$$ , we get $$\begin{aligned} & \sin \alpha =\sqrt{1-{{\cos }^{2}}\alpha } \\\ & \Rightarrow \sin \alpha =\sqrt{1-\dfrac{144}{169}} \\\ & \Rightarrow \sin \alpha =\sqrt{\dfrac{25}{169}} \\\ & \Rightarrow \sin \alpha =\dfrac{5}{13} \\\ \end{aligned}$$ Similarly, replacing x by $$\beta $$ in equation (10), we get $${{\sin }^{2}}\beta +{{\cos }^{2}}\beta =1$$ $$\begin{aligned} & \Rightarrow {{\cos }^{2}}\beta =1-si{{n}^{2}}\beta \\\ & \Rightarrow \cos \beta =\sqrt{1-si{{n}^{2}}\beta } \\\ \end{aligned}$$ Substituting the value of $$sin\beta =\dfrac{3}{5}$$ , we get $$\begin{aligned} & \cos \beta =\sqrt{1-{{\sin }^{2}}\beta } \\\ & \Rightarrow \cos \beta =\sqrt{1-\dfrac{9}{25}} \\\ & \Rightarrow \cos \beta =\sqrt{\dfrac{25-9}{25}} \\\ & \Rightarrow \cos \beta =\sqrt{\dfrac{16}{25}} \\\ & \Rightarrow \cos \beta =\dfrac{4}{5} \\\ \end{aligned}$$ Now, we have got all the values required to solve equation(9). $$\cos \beta =\dfrac{4}{5},\sin \beta =\dfrac{3}{5},\cos \alpha =\dfrac{12}{13},\sin \alpha =\dfrac{5}{13}$$. Putting these values in equation(9), we get $$\begin{aligned} & \sin (\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta \\\ & =\dfrac{5}{13}.\dfrac{4}{5}+\dfrac{12}{13}.\dfrac{3}{5} \\\ & =\dfrac{20+36}{65} \\\ & =\dfrac{56}{65} \\\ \end{aligned}$$ Now, we have $$\sin (\alpha +\beta )=\dfrac{56}{65}$$ $$\Rightarrow \alpha +\beta ={{\sin }^{-1}}\left( \dfrac{56}{65} \right)$$……………….(10) Equation(7) is equal to equation(10). So, $${{\cos }^{-1}}\dfrac{12}{13}+{{\sin }^{-1}}\dfrac{3}{5}={{\sin }^{-1}}\dfrac{56}{65}$$. Therefore, LHS = RHS. Hence, proved. Note: This question can also be solved by using the Pythagoras theorem. Assume, $$\begin{aligned} & \alpha ={{\cos }^{-1}}\dfrac{12}{13} \\\ & \Rightarrow \cos \alpha =\dfrac{12}{13} \\\ \end{aligned}$$ Now, using a right-angled triangle, we can get the value of $$\sin \alpha $$. ![](https://lh5.googleusercontent.com/c-zV42LZJL32nb1v1JPq3xtxc3KdaqG6IUWskQWauN9MUdf72IvVbdlPfBGCg85SN4QgRo-xOKzMlaJZH2RlsBQCwIkJ_fegEBs95GkwH8PV3J9QGXUE4o0l7LD2IYzgrhNaZ9Q) Using the Pythagoras theorem, we can find the height. Height = $$\sqrt{{{\left( hypotenuse \right)}^{2}}-{{\left( base \right)}^{2}}}$$ $$\begin{aligned} & \sqrt{{{\left( 13 \right)}^{2}}-{{(12)}^{2}}} \\\ & =\sqrt{169-144} \\\ & =\sqrt{25} \\\ & =5 \\\ \end{aligned}$$ $$\begin{aligned} & \sin \alpha =\dfrac{height}{hypotenuse} \\\ & \sin \alpha =\dfrac{5}{13} \\\ \end{aligned}$$ Similarly, assume $$\begin{aligned} & \beta ={{\sin }^{-1}}\dfrac{3}{5} \\\ & \Rightarrow \sin \beta =\dfrac{3}{5} \\\ \end{aligned}$$ Now, using a right-angled triangle, we can get the value of $$\sin \alpha $$. ![](https://lh3.googleusercontent.com/LIAqWd752NPXimLlU9xqXeVd-fYZ4V9xkHrYFeMTiuJ-Os01SgrJRYPqgSa2tTolauxP-O7jO6sLO8-uZvX19ahpEjrVdqOw41L8C_okIT6YfDmTRjUPK6-EU8SOhrZ2eTjAxiQ) Using the Pythagoras theorem, we can find the base. Base = $$\sqrt{{{\left( hypotenuse \right)}^{2}}-{{\left( height \right)}^{2}}}$$ $$\begin{aligned} & \sqrt{{{\left( 5 \right)}^{2}}-{{(3)}^{2}}} \\\ & =\sqrt{25-9} \\\ & =\sqrt{16} \\\ & =4 \\\ \end{aligned}$$ $$\begin{aligned} & \cos \beta =\dfrac{base}{hypotenuse} \\\ & \cos \beta =\dfrac{4}{5} \\\ \end{aligned}$$ Now, use the formula, $$\sin (\alpha +\beta )=sin\alpha cos\beta +cos\alpha sin\beta $$, solve it further.